Sito: West Lake LDF
ID#: MADO79900932
Brook: 11.b ONI
Other: West Late Quaray
material Co. 7-18-91

JUL 22 1991
SAFE SECTION

RESPONSE OF WEST LAKE QUARRY AND MATERIAL COMPANY

TO

CERCLA 104(e) REQUEST FOR INFORMATION

VOLUME II OF IV

40056053 SUPERFUND RECORDS

JULY 18, 1991

HYDROGEOLOGIC INVESTIGATION WESTLAKE LANDFILL PRIMARY PHASE REPORT

October, 1986 Project No. 84-075-4-004

Burns & McDonnell Engineers-Architects-Consultants Kansas City, Missouri

> Wam 0009 Exhibit 14-B

TABLE OF CONTENTS

		Page No.
INTRODU	CTION	
PART I	- GEOLOGICAL SETTING	1-1
PART II	- SUBSURFACE INVESTIGATION	II-1
Α.	Preliminary and Primary Investigations and	
_	Previous Studies	11-1
В.	Monitoring Well Program	
C.	Drilling and Soil Testing	
D.	Groundwater Sampling and Chemical	
_	Analysis	
E.	Data Interpretation	
DADT IT	I - SUBSURFACE CONDITIONS	III-1
A.	Unconsolidated Overburden	111-1
В.	Bedrock	
C.	Groundwater Occurrence	
•		•
PART IV	- IMPACT OF LANDFILL ON GROUNDWATER QUALITY	IV-1
A.	Downgradient Water Use	IV-1
В.	Downgradient Water Quality	
С.	Risk Assessment	
D. D. T.	201471127012	** 1
	- CONCLUSIONS	V-1
Α.	Summary of Hydrogeological Conditions	V-1
В.	Groundwater Chemical Quality	
c.	Recommendations	
REFEREN	CES	
FIGURES		
APPENDI	K A - Criteria for Logging of Soil and Rock - Boring Logs	
	K B - Piezometer Construction	
	K C - Observed Water Level Readings	
	K D - Laboratory Test Data on Soil Engineering Properties	
	K E - Groundwater Chemical Analyses	

LIST OF FIGURES

Figure No.	<u>Title</u>	Page No.
IN-1	Site Location and Regional Groundwater Map	
I-1	Regional Groundwater Profile	
I-2	Site Map	
I-3	Geologic Profile, All Wells, 8/29/84 and 8/30/84	
III-1	Water Level Contours, All Wells, 8/29/84 and 8/30/84	
III-2	Piezometer and River, Hydrographs, November, 1983 - December 1984	
TTT 2		
III-3	Piezometer and River Hydrographs, January, 1985 - June, 1986	
III-4	Water Level Contours, Shallow and Intermediate	
_	Wells, 8/8/85	
III-5	Water Level Contours, Deep Wells, 8/8/85	
III -6	Water Level Contours, Deep Wells, 12/11/85	
III - 7	Water Level Contours, Deep Wells, 5/20/85	
111-8	Distribution of Methylene Chloride, Round 1	
III -9	Distribution of Methylene Chloride, Round 2	
III-10	Distribution of BIS (2 Ethyl Hexyl) Phthalate,	
	Round 1	
III-11	Distribution of Phenol, Round 1	
III-12	Distribution of Chlordane, Round 1	
III-13	Distribution of 4, 4'DDE, Round 1	
III-14	Distribution of Sodium, Round 1	
III-15	Distribution of Iron, Round 1	
III-16	Distribution of Zinc, Round 1	
III-17	Distribution of Zinc, Round 2	
III-18	Distribution of Arsenic, Round 2	

LIST OF TABLES

Table No.	<u>Title</u>	Page No
III-1	Summary of Boring Depths	111-2
III -2	Summary of Depths to Bedrock	
IV-1	Water Quality Criteria	

WSTTC.HYI TC-3

INTRODUCTION

SITE LOCATION

The site of the West Lake Landfill is located at 13500 St. Charles Rock Road in Bridgeton, Missouri (see Figure IN-1). The site of the old landfill in approximately acres, was placed on the alluvium of the Missouri River, and part was placed in previously existing rock quarry pits at the edge of the Missouri River Valley. Current landfilling is being carried out in a deep quarry placed in bedrock formations which are hydrologically isolated from the old landfill, and is therefore not part of this study.

PURPOSE

The hydrogeologic investigation was intended to obtain the data necessary to define the groundwater flow patterns and flow rates in the vicinity of the site, and determine the nature and distribution of any contaminants which may occur in the groundwater. It was also intended to provide a basis for planning a program of long-term groundwater quality monitoring at the site and background data for development of a remedial action program if conditions warrant.

Because the geologic setting and stratification of the subsurface materials beneath the site influence the groundwater occurrence and flow pattern, a major part of the investigation was directed towards defining the site geology and engineering properties of the subsurface materials. In addition, a certain amount of data was available from previous investigations, and an analysis was made of the usefulness of that information.

WSTINT.HYI

SCOPE

To analyze the hydrogeologic conditions at the site, field work was performed in two phases, after evaluating existing subsurface information, as well as available geological publications. Soil samples were obtained from 15 borings drilled for this investigation. Selected samples were tested for soil engineering properties, including moisture content, density, grain size, and for fine grained soils, Atterberg limits. Piezometer standpipes were installed in the borings, both to future water level measurements and in some cases to obtain groundwater samples for chemical analysis. Twenty of the previously existing piezometers on the site were found to be usable for water level determinations. Therefore, water levels were measured periodically in a total of 35 piezometers. The piezometer tubes are screened at various depths in the alluvial aquifer, to determine the hydraulic head and groundwater flow direction at different levels in different and areas of the site.

Groundwater samples were collected from 18 selected monitoring wells. The wells were selected to provide data at widespread locations on the site and at different depths within the alluvium. Two rounds of sampling were performed, one in winter and one in summer. The water samples were chemically analyzed in the laboratory for full priority pollutants.

To assist in interpretation of the data from this investigation, maps and subsurface profiles have been prepared showing the hydraulic head in the aquifer, and the distribution of chemical constituents in the groundwater. The maps and profiles are included in this report.

The analysis of the data includes an assessment of the impacts of the landfill on the groundwater of the area. The analysis was applied towards recommending a plan for future, long-term groundwater monitoring.

* * * * *

PART I

GEOLOGICAL SETTING

In the St. Louis vicinity, the bedrock stratigraphic sequence consists primarily of limestone and dolomite which were deposited, for the most part, in shallow epicontinental seas. Geologic deposits range in age from Precambrian to Holocene. The Precambrian rocks are the only units that do not crop out in the St. Louis area; they are, however, present in the subsurface. Many periods of emergence, nondeposition or erosion are implied by the disconformities and local unconformities observed in surface exposures and well data.

Bedrock in the West Lake area consists of limestones of the Pennsylvanian and Mississippian (Ref. 1). A thin deposit of the Cherokee Group systems (Pennsylvanian) occurs nearest the surface at the site. The Cherokee consists primarily of limestone in this area, but may also contain interbeds of other clastic sedimentary rocks, primarily shales (Ref. 2). Below the Cherokee are Mississippian limestones of the Meramecian series. The Ste. Genevieve limestone (approximately 30 feet thick), if present here, is apparently quite thin. Occurring stratigraphically below the Ste. Genevieve is the St. Louis Formation (approximately 100 feet thick). The Saint Louis is the primary limestone which is presently mined at the West Lake Quarry. Below the St. Louis Formation is the Salem Formation (approximately 100 to 160 feet thick), a limestone which is also being quarried at West Lake. The Warsaw Formation occurs below the Salem. The Warsaw is a shaley limestone with some shale interbeds (approximately 80 feet thick) and quarrying probably terminates near the top of this stratum.

WST1.HYI I-1

The present structural attitude of the rock units is the result of compressional, tensional and uplifting forces which moved and altered the units from their original depositional positions. These forces have folded, fractured, faulted and tilted the rocks in the St. Louis area to a moderate degree, and the resulting structures are superimposed on a regional dip or large-scale tilting of the rock units of from 60 to 80 feet per mile to the northeast. Locally, in the West Lake area, the bedrock strata are nearly horizontal with minimal fractures.

Alluvium, including thick deposits of glacial outwash and some river terrace deposits fills the deeply eroded bedrock channel formed by the Missouri River during the Pleistocene Epoch. The thickness of the alluvium is variable because of irregularities in the bedrock surface upon which it was deposited, but the maximum known thickness is approximately 150 feet. The alluvium is composed of clay, silt, sand and gravel. In general, the alluvium becomes coarser-grained with depth. Occuring on the Missouri River valley bluffs above the river valley are thick loess deposits. These loess deposits directly overlie the bedrock of the uplands.

The West Lake Landfill site is located on the Missouri River valley's east wall (Figure I-1). Bedrock in the landfill vicinity occurs near the surface at the point of transition between the loessial bluffs to the east and the alluvial valley to the west. The generalized line of transition is shown on Figure I-2. The bedrock surface drops off sharply below the valley to the west and the loess bluffs rise abruptly above the bedrock to the east. The quarry operations occur generally where the bedrock is nearest the surface at the edge of the valley

WST1.HYI I-2

wall, and past landfill operations have generally extended from the quarry area westward on the alluvium. The surface of the alluvial deposits is quite level, although small drainageways and channels create slight depressions and terraces.

Figure I-1 is a generalized, vertically exaggerated geologic profile across the Missouri River valley in the vicinity of the site. This profile illustrates the relationships between the impervious bedrock, the alluvial aquifer, and the general range of water table elevations in the aquifer.

Figure I-2 is a site plan showing the topography of the site and the locations of the borings drilled and/or used in this investigation. Also shown on Figure I-2 are the approximate boundaries of the landfilled area.

Figure I-3 is a detailed geologic profile along the southwest perimeter of the existing landfill. The location of the line of the detailed geologic profile is shown on Figure I-2. Figure I-3 shows the relationships between the bedrock and the overlying alluvium, comprised of the coarse-grained aquifer and the uppermost, generally fine-grained aquitard. Also shown are water levels in piezometers at times of relatively high river stage (and consequent high water table in May 1984) and relatively low river stage (and consequent low water table in February 1984). Also, note that the water table intersects the ground surface in the drainage ditch adjacent to the road at the northern end of the profile line.

* * * * *

PART II

SUBSURFACE INVESTIGATION

A. PRELIMINARY AND PRIMARY INVESTIGATIONS AND PREVIOUS STUDIES

A preliminary subsurface field investigation of the site was conducted in August, 1984. The field and laboratory work performed for this investigation were intended to supplement information investigations of this site, and to obtain additional information on groundwater conditions. The preliminary investigation included drilling and sampling nine borings, four of which extended to bedrock. The locations of the borings (which are numbered in the 80's) are shown on Figure I-2. information presented in the report entitled "Hydrogeologic was Investigation - West Lake Landfill - Preliminary Phase Report", January, 1985 by Burns & McDonnell. After the preliminary phase of the project was completed and the data evaluated the primary phase was begun. Six test borings were drilled and piezometers installed in April and August, 1985. All six test borings were drilled to bedrock. The locations of these borings (numbered in the 90's) are shown on Figure I-2.

Existing piezometeres (numbered in the 50's, 60's, and 70's) were evaluated for soundness of construction by field inspection and response to water level changes and found to be acceptable for indication of water levels (hydraulic head). Therefore, data collected from these piezometers was utilized to evaluate groundwater gradients and flow directions.

WST2.HYI II-1

Piezometers were installed in all borings for both phases for purposes of water level determination were used for obtaining water samples for chemical analysis. Some of the piezometers were clustered with existing monitoring wells or with each other resulting in eight clusters of water level monitoring points that can be used to detect possible differences in water pressure (hydraulic head) with depth. Boring depths ranged from 22.0 feet to 143.3 feet. Soil samples were obtained on 5- or 10-foot centers in all borings according to ASTM standards. Using thin-walled Shelby tubes, 12 undisturbed soil samples were obtained at various depths in the borings. Using standard penetration test procedure, 156 split-spoon samples were also obtained.

The geologic logs of all of the borings drilled for this investigation are included in Appendix A.

B. MONITORING WELL PROGRAM

Piezometers were installed in each boring according to the typical construction diagram in Appendix B. Specific construction details for piezometers are noted on the respective boring logs. When piezometers were not responding to changing water levels in the aquifer they were developed by evacuating with compressed air until clear water flowed freely into the piezometer. Piezometer D-87 did not respond even after evacuation by compressed air, so it was bailed and surged to ensure that it was functioning properly. Piezometers were installed at shallow depths (designated "S" and screened near the water table elevation), deep depths (designated "D" and screened near the bedrock surface), or intermediate

depths (designated "I"). Depths were determined considering depths of nearby existing piezometers so that the entire saturated thickness of the aquifer could be monitored. Because the depths of many of the shallow and intermediate piezometers were close to each other, data from the shallow and intermediate piezometers were all used together for contouring the water table.

Presence and depth of free water was noted on boring logs during drilling, when possible, and water levels in borings and piezometers were noted immediately after installation and at various times thereafter. These water levels, along with water levels from existing monitoring wells, are tabulated in Appendix C of this report. A surface water monitoring point (SMP-4) was placed in the drainage ditch along St. Charles Rock Road at the northern tip of the site. Throughout most of the year, the water table in the aquifer is above the bottom of the ditch, so monitoring surface water elevations there provides data on hydraulic head in the aquifer. SMP-4 was destroyed before its location and elevation were surveyed but changes in water levels were recorded for three months.

During the preliminary phase, in-situ hydraulic conductivity was determined in four piezometers using a single-pulse bailer test, performed according to methods described by Hvorslev (1951). An air compressor was used to evacuate the piezometers, and water levels were measured as the well recovered. Data from these tests along with calculations of permeability using Hazen's formula are presented in Table D-1 in Appendix D of this report.

WST2.HYI II-3

C. DRILLING AND SOIL TESTING

The soil borings were drilled using a truck-mounted Acker MP-5 drill rig. Generally, 4-inch-diameter continuous-flight augers were used to drill above the water table and 4-1/2-inch-diameter Tri-cone rotary wash methods were used below the water table. The drilling was performed by Wabash Drilling Company (Subsurface Construction Company), St. Louis, Missouri, under the continuous observation of a Burns & McDonnell geologist who logged the encountered soil and rock materials. Surveying to determine boring elevations was done by Bollinger Surveying Company.

Laboratory testing of the soils material was performed by Kansas City Testing Laboratory, Shawnee Mission, Kansas. Tests included (three) moisture contents, (three) dry unit weights, (two) Atterberg limits, (eight) sieve analyses, and (two) hydrometer analyses. All tests were performed in accordance with ASTM standards.

The results of all soils laboratory tests for engineering properties are included in Appendix D.

D. GROUNDWATER SAMPLING AND CHEMICAL ANALYSIS

1. SAMPLE LOCATIONS

For the evaluation of groundwater chemical quality, 18 existing monitoring wells were selected for sampling. The wells were located in various locations around the site of the previously landfilled areas and

II-4

screened in the shallow, intermediate and deep parts of the alluvium. There were two sampling rounds, from December 11 to December 15, 1985, and from May 19 to May 21, 1986. The purpose was to evaluate the difference in groundwater quality in relation to seasonal variation. The sampled monitoring wells were as follows:

s-51	D-87
I - 59	D-88
I-66	D-89
s-80	D-90
D-81	D-91
D-82	D-92
D-83	D-93
S-84	D-94
D-85	D-95

It should be noted that Piezometer I-66 was not sampled during the first sampling round because it was inundated by surface water in the road-side ditch.

2. FIELD METHODS

All samples were collected by a Burns & McDonnell Environmental Engineer with assistance from West Lake employees.

Before sample collection, the water level was measured to determine the amount of water in the piezometer casing. Approximately three casing volumes were then removed from each piezometer with a bailer and the piezometer was allowed to recharge before sampling. A Teflon bailer with polypropylene rope was used to flush and sample.

WST2.HYI II-5

Before moving to the next well, the bailer was thoroughly cleaned with distilled water and the polypropylene rope was replaced.

The samples were collected in bottles prepared and supplied by the laboratory. The volatile samples were collected first, leaving no air space in the sample vials. All preservatives were added to the samples in the field except for the metals samples. Preservative was added to the metals samples after they were filtered through a 45-micron Geotech backflush filter. This took place at the end of each sampling day.

All samples were kept cool until delivery to the laboratory. All sample bottles were accompanied by Chain-of-Custody forms listing information such as the sample number name of sampler, date, bottles, and type of analysis.

3. CHEMICAL ANALYSIS

All samples were analyzed for priority pollutants listed under 40 CFR, Part 122. The priority pollutants consist of the following:

Volatile Organics Acid/Base Neutral Extractables Pesticides/PCB's Total Phenols Total Cyanide Metals

In addition, during Round 1, samples for Monitoring Wells D-83, S-84, D-85 and D-92 were analyzed for gross alpha and beta radiation. On May 7 and 8, 1986, water samples were collected from 32 wells by Department of Energy personnel and analyzed for gross alpha and beta radiation.

4. LABORATORIES

The priority pollutant samples collected during Round 1 were analyzed by Environmental Trace Substances Research Center, located in Columbia, Missouri. The samples analyzed for gross alpha and beta were sent to Controls for Environmental Pollution, Inc., in Santa Fe, New Mexico. Volatile organics were analyzed according to EPA Method 624. Base-Neutral Extractables were analyzed according to EPA Method 625. Acid extractables were analyzed according to EPA Method 604. Pesticides and PCB's were analyzed according to ERA Method 608. Metals were analyzed by inductively coupled plasma, and cold vapor atomic absorption was used to detect mercury.

The second round of priority pollutant samples was analyzed by Envirodyne Engineers of St. Louis, Missouri. The Department of Energy gross alpha and beta samples were analyzed by Oak Ridge Associated Universities, in Oak Ridge, Tennessee. Volatile organics were analyzed by EPA Method 624. Base-Neutral/Acid Extractables, and Pesticides/PCB's were analyzed by EPA Method 625. Arsenic, selenium, silver, antimony and thallium were analyzed by furnace atomic absorption. Mercury was analyzed by cold vapor atomic absorption. The remainder of the metals were analyzed by inductively copyled plasma.

WST2.HYI II-7

E. DATA INTERPRETATION

1. GEOLOGICAL INFORMATION

The geological and subsurface information obtained from the test borings on the site is illustrated on several subsurface profiles to facilitate interpretation and understanding of the geology of the site. The profiles have been used to show the lateral changes in subsurface materials, determined from the geologist's logs and soils laboratory data.

2. WATER LEVEL DATA

Selected rounds of water level measurements have been contoured in plan view to illustrate the configuration of the water table in different parts of the site at times of different river stage. From the water level contour maps, directions of groundwater flow are indicated. Maps were prepared separately for the deep piezometers so that comparison between groundwater flow in the deep and shallow/intermediate zones in the aquifer could be made. Note that the depths of the bottoms of the piezometers designated shallow and intermediate are vary nearly the same, so for purposes of this report, they are contoured together. Selected water levels are also shown on geologic profiles (Figures I-1 and I-3) to illustrate the relationship between deep and shallow water levels. In addition, two graphs are provided showing change in Missouri River stage relative to changes in water levels in selected piezometer.

* * * * * *

II-8

PART III

SUBSURFACE CONDITIONS

A. UNCONSOLIDATED OVERBURDEN

There are basically two types of unconsolidated overburden in the West Lake vicinity; windblown silt (loess) and Missouri River alluvium. The loess overlies bedrock on the bluffs bordering the Missouri River Valley. The old landfill operations on the West Lake property are generally to the west of the loess bluffs. No loess was encountered in test holes drilled for this investigation. Due to the long-term construction activities at the site, soil and crushed rock fill material occurs to depths of over 30 feet in some places on the site. An example can be seen on the log of Boring D-92, where fill soil and rock occurs to a depth of 31.0 feet.

Within the Missouri River Valley are thick deposits of alluvium. The alluvium consists generally of sand and gravel, with minor seams and lenses of clay and silt. Silt and clay occurs in the alluvium in significant amounts at shallow depths, with the maximum depth of occurrence of approximately 25 feet in some locations, and as little as approximately 5 feet in other areas. The alluvium extends to depths of over 100 feet. The alluvium thins abruptly toward the valley edge as the bedrock rises beneath it to form the valley wall. Permeability of the alluvium ranges from 2.4 x 10^{-4} cm/sec to 2.5 x 10^{-1} cm/sec (see Table D-1 in Appendix D).

Ten borings drilled for this investigation penetrated the full thickness of alluvium. Table III-l presents a summary of alluvium thicknesses and the

WST3.HYI III-1

depth to bedrock in each of these borings. All ten of these borings terminated in limestone bedrock.

Table III-1
SUMMARY OF BORING DEPTHS

	Thickness	Depth to
Boring No.	of Alluvium (ft(Bedrock (ft)
D-83	115.3	115.3
D-85	61.5	83.5
D-87	92.0	111.0
D-89	33.9	47.8
D-90	46.0	46.0
D-91	44.0	44.0
D-92	112.6	143.6
D-93	104.0	118.0
D-94	108.8	108.8
D-95	92.6	100.6

Natural deposition in the Missouri River floodplain has occured as the river channel meandered between the valley walls creating point bars and natural levees, filling abandoned channels, and temporarily forming swamps, lakes, and small channel environments. This resulted in the deposition of various materials throughout the floodplain, and, consequently, lithologic units terminate in the subsurface very abruptly both horizontally and vertically. A relatively consistent pattern in the alluvial profile is that coarse sands and gravels tend to occur lower in the profile and silts and clays occur nearer the ground surface. Soils that are predominantly silt and clay tend to occur in the upper 5 to 10 feet of the natural alluvium, but fines occur to depths of approximately 25 feet in places. This is generally above an elevation of 430 feet. A few seams of fine-grained soil occur below the 430-foot elevation as in Boring D-81. South of the site, a substantial

III-2 WST3.HYI

thickness of silty clay was encountered during the investigation. Boring D-91 encountered a deposit of silty clay to a maximum depth of 31.0 feet.

Between elevations of roughly 450 feet and 400 feet, the alluvium is characterized by interbedded seams of sand, silty and clayey sand, and a few silty clay seams. These seams range in thickness from a few inches to over 10 feet. They are quite discontinuous laterally as evidenced by the poor correlation between adjacent borings. This material is generally of a lower permeability than the underlying sands and may be considered an aquitard in the areas where the fines occur. Flow occurs through the soil, but transmission is impeded by the presence of a significant amount of fines. This zone is of a highly variable thickness due to its depositional history (see Figure I-3). In places, the bottom of the old landfill apparently extends below this fine grained stratum into the aquifer sands below.

Below an elevation of roughly 400 feet, thick deposits of sand which are quite uniform in character, are predominant. Several borings encountered gravel seams. For example, Borings D-81, D-92, D-93, and D-95 encountered gravel seams at depths ranging from 47 to 123 feet. While being more uniform in character than the overlying alluvium, these deeper sands exhibit changes in lithology and grain-size characteristics when correlated between borings.

B. BEDROCK

Bedrock was encountered in Borings D-83, D-85, D-87, D-89, D-90, D-91, D-92, D-93, D-94 and D-95. The rock was penetrated from 0.0-feet to 1.2 feet in these borings. The bedrock is described as a cream to light-brown limestone, medium strong to strong, and correlates with the St. Louis and Salem limestones observed in the West Lake quarry. The bedrock below the alluvium is apparently only slightly weathered as evidenced by the difficulty with which it was penetrated. A few fracture zones are visible in the quarry but the limestone is predominantly unfractured. Very few seeps discharge into the quarry which has been excavated to more than 180 feet below the alluvial water table.

Table III-2, below, lists the borings in which bedrock was encountered and the depths and elevations of the bedrock surface, which was found to be limestone in all cases.

Table III-2

	Depth to	Elevation
Boring No.	Bedrock	of Bedrock
D-83	115.3	329.1
D-85	83.5	369.4
D-87	111.0	349.0
D-89	47.8	406.3
D-90	46.0	400.0
D-91	44.0	404.0
D-92	143.6	331.77
D-93	118.0	332.70
D-94	109.8	333.88
D-95	100.6	352.49

The base of the nearby quarry is in shaley limestone, probably of the Warsaw Formation, which is at an elevation of about 240 feet. The St. Louis and

Salem limestones in the quarry area extend from near the ground surface down to the Warsaw Formation.

C. GROUNDWATER OCCURRENCE

1. GENERAL DESCRIPTION

Groundwater in the alluvium generally occurs as a single aquifer under water table conditions. There are a few localized exceptions to this condition which cause minor and usually temporary confining conditions. Another minor exception that has been found is that the water level in piezometer S-80, at the south end of the site represents a perched water table above a localized silt and clay deposit. The water table surface is quite level, not varying more than a foot or two in elevation over most of the site at any given time; thus the gradient is very low.

The water table elevation fluctuates vertically as much as 7 feet, in any particular well, throughout the year in response to variations in precipitation. Precipitation affects the Missouri River stages, infiltration on the site, and some localized recharge due to runoff from the river valley bluffs; all of which have direct affect on the water table elevations.

Generally, the major portion of the aquifer is responding to a gradient induced by the configuration of the Missouri River bedrock channel and also influenced by the Missouri River stage (Ref. 3). but superimposed upon this general gradient are some minor groundwater mounds and

WST3.HYI

depressions which influence the gradient near the water table surface. These are apparent from groundwater contour maps, several of which were constructed from water level data obtained from this study. The August 29-30, 1984 data are representative of the perennial contour pattern and are shown on Figure III-2. The most prominent of the water table features is the persistent mound occurring in the southern portion of the landfill.

The water table gradient is variable with time in different parts of the aquifer, although these variations are of a relatively minor scale. Since the water table is nearly level, a relatively minor change in the water level in an area can cause a change in flow direction at the water table surface. Because of the many minor effects on the water table over the area, such as local recharge and discharge areas and variable soils materials, the water table is an uneven surface at any given time and may change its configuration over a period of time. However, overall movement of groundwater over a substantial period of time is most often to the northwest, either toward the river or subparallel to the river.

The elevation of the water table at the site generally fluctuates between 430 and 440 feet during the year. The water table is high during and after the spring rains and snowmelt of March and April and rises slightly after the fall rains in October (see Figures III-2 and III-3). The water table fluctuations generally mimic the Missouri River stage fluctuations in a subdued manner.

III-6 WST3.HYI

At any given time, the water table is nearly level with the notable exception of the persistent groundwater mound in the vicinity of Piezometers S-75, S-76, I-73 and D-89 which is discussed later in this section. In the northern half of the landfill site, the relief on the water table surface is commonly less than 0.5-feet at any given time, indicating a very low gradient. The groundwater mound in the southern portion of the landfill is seen to exhibit relief of from 1 to about 4 feet at the different times of observation for this study.

At times, there is an apparent predominantly downward component of flow in the aquifer near the valley wall. This is indicated by the difference in hydrostatic head between piezometers screened in the upper and lower portions of the aquifer. The deeper piezometers generally indicate lower water levels than nearby shallower piezometers. groundwater flows from areas of higher pressure to lower pressure, the flow would be generally downward in this area. An example of this is seen when comparing October 1984 water levels in the deeper D-81 and D-89 piezometers to water levels in the shallower S-75 and S-76 piezometers. The calculated vertical gradient near the valley wall? varies somewhat throughout the year but generally ranges between 0.117 0.0007 This vertical component of flow dominates the horizontal component near the valley wall, which generally ranges between 0.003 and 0.008 throughout the year. Further west, away from the sloping bedrock valley wall, flow is predominantly lateral. Comparison of hydrostatic head in D-83 with shallow hydrostatic head in I-62 indicates little elevation difference and, therefore, almost no vertical component

Unis

WST3.HYI III-7

w.to?

of flow exists. The flow is basically horizontal; generally toward the Missouri River. The horizontal gradient generally ranges between 0.0003 and 0.0007 throughout this year as calculated from regional groundwater contours (obtained from Earth City piezometers as shown on Figure IN-1).

Generally, the water table elevation is influenced most significantly by the stages of the Missouri River. As the river rises or declines, the water table responds similarly but in a delayed and subdued manner. Hydrographs were constructed from piezometers which exhibit the typical pattern of change in water levels throughout the year. As can be seen these hydrographs with the Missouri River stages comparing (Figures III-2 and III-3), the water levels in the piezometers are seen to rise steadily in the spring, when the river is rising, and decline during the drier summer months. the rise in the water table at the West Lake site lags behind the overall rise in the river stage during the spring by several weeks. The alluvium creates a buffer zone between the river and the alluvial groundwater beneath the site causing the time lag. Another effect of the alluvium is to decrease the effect of rapid changes in the river stage so that the water levels in the piezometers do not fluctuate dramatically on a daily basis. This lack of daily fluctuation of the water table was documented by the continuous water level recorder, which reveals gradual, slow changes in water table elevation.

The water table generally slopes downstream and toward the river during the dry summer months and generally downstream during the wet spring

III-8

WST3.HYI

?? whotau they had

months, although changes in gradient direction apparently occur at other times during the year in response to changes in stage of the Missouri River. Determination of this overall gradient direction is based upon Earth City piezometer readings and from water table contour maps of the floodplain across the Missouri River Valley from the site (Ref. 4) (see Figure IN-1). The gradient may be away from the river for short periods of time during high river states, but this is apparently only a localized affect near the river.

The unconfined condition of the aquifer is evidenced by the absence of a correlated between borings. continuous aquiclude being indication of unconfined conditions is the water level data from clustered piezometers. As can be seen by comparing Figures III-1 and III-4, five clusters (pairs) of piezometers, S-84 and D-85, I-66 and D-94; I-62 and D-83; S-82 and D-93; S-51 and D-90; and I-50 and D-91 show essentially no elevation difference in water levels between the piezometers screened in the deeper portion of the aquifer and the adjacent piezometers set to shallower depths. This indicates that the these measurements were made.

Another cluster, S-80 and I-50, exhibits significant, though not large, water level differences between adjacent deep and shallow wells. The difference between water levels in S-80 and the deeper I-50 is due to a

shallow perched waer zone which is intercepted by the screened segment of Piezometer S-80. Piezometer S-80 indicates the head in the perched zone and I-50 indicates the head in a deeper sand seam. The san seam is confined below silty clay. Because the water elevation in I-50 is very nearly the same elevation as in nearby wells and since the clay seams in the vicinity tend not to be laterally extensive, it is concluded that the groundwater in I-50 is semi-confined, rather than completely confined. That is, it has some degree of hydraulic connection with the surrounding groundwater, but is partially confined because of the presence of the overlying low-permeability material. Since the water table in Piezometer S-80 is perched, the water levels from this well are excluded from the groundwater contour maps.

Water levels were continuously monitored in Piezometer I-62 from May 24 to October 23, 1984 using a Stevens water level recorder. The water level remained fairly steady, with only minor fluctuations, until approximately July 6, 1984 when a fairly steady decline from 436.1 to 435.6 occurred until about the end of July. Another more rapid decline in the water level occurred from about August 6 to August 28 when the water elevation dropped from 435.4 to 432.9. The water level remained fairly steady through September until October 3 when the recorder was removed. The indication from the continuous monitoring data is that monthly water level measurements are adequate for detecting any significant changes in water table elevations.

III-10 WST3.HYI

FLOW DIRECTION AND GRADIENTS

Figure III-1 includes water table contours and arrows indicating general groundwater flow direction. It is important to note that the map was made using water level data from August 29 and 30, 1984, and that the pattern of contours is consistent with the pattern from the other water well measurements made for this study, thus, the pattern of water table contours is relatively constant throughout the year, even while the elevation of the water table in the entire aquifer is illustrated by the water levels shown on the detailed geologic profile across the site (Figure I-3).

To determine the difference between groundwater flow in the upper portion of the aquifer as compared to that in the lower part of the aquifer, a comparison was made between water levels measured in the shallow and intermediate piezometers and those measured in the deep peizometers.

The deep and shallow flow patterns are generally similar, but there are times when the hydraulic gradients in the lower part of the aquifer are extremely low (less than 1 foot per mile), and the groundwater flow rates in the deep aquifer are negligible. This can be seen by comparing Figure III-4 (where the flow patterns and gradients in the upper aquifer are similar to the general pattern shown on Figure III-3), with Figure III-5, where the gradient is negligible, but very slightly elevated in the northern parts of the landfill. Figures III-5 and III-6 have been provided to illustrate that there are times when a gradient builds up on

WST3.HYI III-11

the hydraulic head in the deep aquifer, in response to recharge from the surface water recharge zones in the southeast part of the site. The changing pattern of hydraulic head distribution in the deep portion of the aquifer is also probably related to changing pressures in the aquifer canal by rise and fall f river stage. As can be seen in Figures III-6 and III-7, the pattern of groundwater flow in the deep aquifer is similar to that in the shallow aquifer.

The flow direction of groundwater beneath the West lake site is dependent upon which part of the aquifer is considered. At the surface of the water table, a perennial mound in the southern portion of the site controls the flow direction (see Figure III-1). Groundwater in the upper portion of the aquifer will flow away from the mound to the north, west, and south. Because this mound is small (less than 3 feet of relief in comparison to the thickness and volume of the aquifer, it has only a slight affect on groundwater flow direction at greater depths. The groundwater mound is the result of a local recharge area created by: (1) the pumping of water from the quarry to surface drainage ditches which is discharged to this area, (2) surface infiltration along Old St. Charges Rock Road, and (3) possible leakage from unlined surface water holding ponds in the quarry vicinity. Groundwater in the lower portion of the aquifer flows generally in a westerly or northwesterly direction in response to the gradient induced by the Missouri River stage and the gradient of the river valley. Flow is predominantly downward near the valley wall. Another influence on the flow direction is the nonuniform permeability characteristics of the aquifer. Because

(

III-12

WST3.HYI

of the various alluvial materials, such as clay lenses and small sandfilled channels, groundwater will flow more rapidly through the higher permeability materials. These effects will tend to be localized and will not change the overall flow direction drastically.

In the northern part of the site where the water table gradients are seen to the very low (see Figure III-1), groundwater flow is generally northward near the northern end of the site and westward from the western portion of the landfill. Thus, flow is generally radiating from the central portion of the landfill toward the perimeter, probably due to slight mounding of the water table within the landfill itself. Because of the extremely low hydraulic gradients and low relief on the water table, this pattern may not be consistent with time; local variations may alter the pattern somewhat, but these variations are minor. Thus the pattern shown on Figure III-1 predominates throughout the year.

2. GROUNDWATER QUALITY

WST3.HYI

a. Distribution of Chemical Constituents

The lateral and vertical distribution of detected chemical constituents was investigated to determine if the landfill was affecting local and downgradient groundwater quality.

(1) Lateral Distribution: Chemical results were obtained from wells upgradient, downgradient, and around the perimeter of the

III**-**13

More

landfilled area. When chemicals were detected at several locations, the results were plotted on a site map. The most informative chemical distribution maps are shown in this report.

The complete results of chemical analysis are contained in Appendix E.

The only priority pollutant volatile organic compound detected in both rounds methylene chloride. The chemical was distributions for Round 1 and Round 2 are shown on Figures and . In Round 1, methylene chloride was detected in wells throughout the landfill area. Piezometer D-90 showed 83 ug/l of methylene chloride, the highest detected level. concentration pattern was irregular and therefore not contoured. In general, the downgradient wells showed lower levels of methylene chloride (from 6 to 12 ug/1), except Piezometer D-83, which had 55 ug/1. *Acetone, not a priority pollutant, was also detected in most samples. Methylene chloride was also detected in Round 2, but at only three locations and at lower concentrations. Piezometer D-90, only 6 ug/1. Piezometer D-89 contained showed 10 ug/1Piezometer I-59, a shallow downgradient well, showed 7 ug/1. The rest of the well concentrations were less than the detection limit of 5 ug/l.

The only priority pollutant base-neutral compounds detected in Round 1 were bis(2-ethylhexyl)phthalate and trace amounts of two

III-14 WST3.HYI

other phthalates. Only bis(2-ethylhexyl)phthalate was detected during Round 2 at one location. The chemical distribution map for Round 1 is shown on Figure III-10. Round 1 results showed bis(2-ethylhexyl)phthalate at five locations throughout the landfill area. The pattern was irregular and therefore not 115 ug/1, contoured. Piezometer D-90 showed while the background wells had concentrations less than the Piezometer D-92 had the highest level of detection limit. 477 ug/l. The downgradient well mostly had concentrations either close to or below the detection limit.

Round 2 results showed bis(2-ethylhexyl)phthalate at only one location. As in Round 1, Piezometer D-92 had the highest level of 25 ug/l. All other wells showed concentrations less than the 10 ug/l detection limit.

The Round 1 results, in addition to providing priority pollutants concentrations, also provided information on possible additional organic compounds. Trace amounts of aliphatic hydrocarbons (also identified as diesel oil) were detected in Piezometer I-59 and S-80. An organic odor was evident in Piezometer S-80 during both sampling rounds. Most of the samples contained a variety of tentatively identified compounds such as phthalate esters, trimethyl cyclohexane-1-one, and other compounds found in plastics. The source of these compounds is unknown.

III-15

Phenol was detected at five locations in Round 1. Figure III-11 shows the distribution of phenol. The pattern is irregular and therefore not contoured. Piezometer D-92 had the highest concentration of 19 ug/1. The downgradient wells to the west of the landfill had concentrations of up to 7 ug/1. The detection limit was 1.7 ug/1.

Phenol was not detected in Round 2 above the detection limit of 10 ug/1. No other acid-extractable compound was detected. A general analysis of total phenolic compounds, a different analysis with detection limit of 2 ug/1, was negative.

Trace amounts of several pesticides were detected Round 1. Compounds detected included gamma BHC (Lindane), delta BHC, chlordane, dieldrin, endrin, 4,4' DDD, 4,4' DDE, 4,4' DDT, hexachlorobenzene. The compounds DDD and DDE are and decomposition products of DDT. All wells tested positive for at least one pesticide. Piezometers S-82 and D-83, to the west of the landfill, showed the greatest numbers and highest concentrations of pesticides. All pesticide concentrations were less than 0.70 ug/l. The distribution of two frequently found pesticides, chlordane and 4,4' DDE, were plotted and shown on Figures III-12 and III-13. Chlordane was not detected in the upgradient wells, and shows an irregular pattern in the downgradient wells. Piezometer S-82 had a maximum concentration of 0.258 ug/1. The DDT decomposition product, 4,4' DDE, was

III-16

WST3.HYI

found at 11 wells, both upgradient and downgradient of the landfill. The upgradient and background wells had higher concentrations. Piezometer D-89 had the maximum concentration at 0.117 ug/1. In general, the distribution of pesticides is irregular and the source is unknown. No pesticides were detected in Round 2. The detection limits in Round 2 were similar to those in Round 1.

elaboration protection

The distribution of inorganic constituents followed an undefined pattern as did the organic constituents. Total cyanide was detected at 1 or 2 ug/l levels at six locations during Round 1. The highest level was 6 ug/l at Piezometer D-90 to the south of the landfill area. In Round 2, total cyanide was detected in only one well above the 5 ug/l detection limit. Piezometer D-89 had the highest level at 7 ug/l. Furth ground will be the figure of the south of the highest level at 7 ug/l.

The Round 1 metals ICP (Inductively Coupled Plasma) scan produced results for 32 dissolved metals. Conventional parameters such as iron and sodium were plotted to determine a pattern with respect to the landfill, since these compounds are often associated with landfill contamination. The distributions of sodium and iron are shown on Figures III-14 and III-15. The sodium concentration ranged from 5 mg/l to a high of 175 mg/l at Piezometer D-83. The ranges were generally between 30 and 70 mg/l both upgradient and downgradient of the landfill, with no distinct pattern. Levels were generally higher in the wells

west of the landfill (over 100 mg/l. Dissolved distribution was also irregular. The highest concentration of 31.5 mg/l was found in Piezometer S-84. Levels were generally landfill within the boundary. Downgradient higher concentrations were slightly higher than upgradient concentrations.

In Round 1, very few priority pollutant metals were detected, except for copper and zinc. The distribution of zinc, which was found in almost all wells, is shown for Rounds 1 and 2 on Figures III-16 and III-17. The concentrations ranged from less than 2 ug/1 in Piezometer D-90 to 1240 ug/1 in the adjacent Piezometer S-51. Most other concentrations ranged from 30 to 140 ug/1 throughout the landfill.

In Round 2, the detection limits for most metals were approximately one tenth the detection limits in Round 1. Even at detection limits of 1 to 4 ug/1, very few heavy metals were detected. The highest lead concentration was found at Piezometer D-91, to the south of the landfill. Compounds such as antimony, nickel, thallium, and zinc were commonly found. Silver was detected but at levels close to or below the detection limit of 2 ug/1. The distribution of zinc is shown on Figure III-19. As in Round 1, the lowest level of less than 2 ug/1 was found in Piezometer D-90, while the highest level of 2000 ug/1 was found in the adjacent Piezometer S-51. The

III-18

WST3.HYI

remaining wells ranged between less than 2 and 70 ug/l throughout the landfill.

The distribution of the heavy metal arsenic was plotted, since several positive values were obtained. This is shown on Figure III-18. Piezometer D-91, a background well, contained 4 ug/l of dissolved arsenic. The maximum level of 9 ug/l was found in Piezometer S-84 and S-88.

Generally, the distribution of dissolved metals showed no distinct pattern and downgradient levels did not significantly differ from upgradient levels.

The significance of the chemical constituent concentrations will be discussed in Part IV.

In addition to priority pollutant analysis, four wells were also sampled for gross alpha and beta radiation during Round 1. The results are included in Appendix E. The values for gross alpha ranged from less than 2 pCi/l (pico curies per liter) in Piezometer D-83 to 270 pCi/l in Piezometer S-84. Piezometer S-84 had the only gross alpha or beta level exceeding 31 pCi/l. The laboratory explained that these high levels could have been due to the presence of suspended clay material in the sample, and that future samples should be filtered.

III-19

In May, 1986, 32 well samples were collected and analyzed for gross alpha and beta by the Department of Energy. The results are included in Appendix E. Further isotopic analyses are being performed on many of the samples.

- (2) <u>Vertical Distribution</u>: The vertical distribution of chemical constituents was evaluated to determine:
 - (a) The presence of chemicals in the shallow and deep aquifers.
 - (b) Differences between the shallow and deep aquifers with respect to chemical constituents.

Organic chemicals were detected both in the shallow and deep part of the aquifer. In general, highest levels of methylene chloride were found in the deep piezometers, although only three piezometers had detectable levels in Round 2. Bis(2-ethylhexyl)phthalate was only found in deep piezometers in both Round 1 and Round 2. In Round 1, phenol was found in both shallow and deep piezometers. Pesticides were also found in both shallow and deep piezometers at similar concentrations.

Dissolved metals concentrations showed no definite pattern with respect to shallow and deep aquifer levels. In some well clusters, sodium was highest in the deep wells and in other well clusters sodium was highest in the shallow wells. The same was

true for iron, zinc and many of the other detected metals. The well cluster of D-90 and S-51 consistently showed a low zinc level in the deep well and a high zinc level in the shallow well. The reason for this is uncertain, since this occurrence was inconsistent with other metals data but nonetheless is not at a level of concern.

b. Seasonal Variation

The sampling rounds occurred during two distinct seasons. took place in December while Round 2 took place in May. In general, more chemicals were detected in Round 1, and higher concentrations. Among those chemicals found to a greater extent in Round 1 were methylene chloride, bis(2-ethylhexyl)phthalate, phenol and pesticides. Priority pollutant metals were found more often in Round 2 because of the lower detection limits. Comparable metals such as zinc did not show substantial changes from Round 1 to Round 2.

c. Validity of Data

The validity of the chemical data is dependent on:

- o The field collection of the water samples and proper preservation of the samples.
- o The chemical laboratory quality assurance/quality control (QA/QC).

WST3.HYI III-21

The organic data can be evaluated using the laboratory spike and blank and replicate sample data. During Round 1, the spike and duplicate sample results were within method accuracy limits. Bis(2-ethylhexyl)phthalate was detected in the blank at 3.5 ug/l.

The Round 2 laboratory volatile organic blanks contained 17 and 15 ug/1 of methylene chloride. Trace concentrations of bis(2-ethylhexyl)phthalate were detected in the blanks.

The QA/QC information provided by the laboratories for Round 1 and Round 2 indicates that the sample data is reliable with respect to laboratory analysis. Possible interferences are methylene chloride and bis(2-ethylhexyl)phthalate. The Round 2 blank concentrations of methylene chloride may be high enough to cancel out the concentrations found in the three wells.

Field procedures could also have introduced an error factor to the chemical results. Common sampling errors are:

- o Introduction of surface contamination to the sample.
- o Improper cooling, storage and preservation.
- o Aeration of sample during collection.
- o Insufficient purging of stagnant well water.
- o Use of unclean sample bottles and sampling equipment.

Since precautions were taken to minimize these errors, the collected samples are probably representative of the aquifer water quality.

III-22 WST3.HYI

It should be noted that the Department of Energy samples, taken on May 7 and 8, 1986, were sampled by different personnel. The quality control of the filed procedures are unknown.

* * * * *

III-23

PART IV

IMPACT OF LANDFILL ON GROUNDWATER QUALITY

A. DOWNGRADIENT WATER USE

As described above in the discussion of regional groundwater hydrology, the discharge point for the groundwater downgradient beneath the old landfill site is the Missouri River. There are no water supply wells at the Earth City industrial park, and no known water supply wells elsewhere downgradient. The drainage ditches along St. Charles Rock Road intersect the water table. Therefore, the groundwater underflow beneath the site passes through the ditches as a surface water occurrence.

B. DOWNGRADIENT GROUNDWATER QUALITY

To assess the impact of the landfill on groundwater quality, the chemical constituent levels in the background wells were compared with levels within and downgradient of the landfill.

Methylene chloride was found in a background piezometer (D-91), an upgradient piezometer (D-89) and is also a possible laboratory interferent. It is unclear whether the landfill is a source of methylene chloride.

Bis (2-ethylhexyl)pthalate was found in an upgradient (D-89) and is a possible laboratory interferent. Levels in Round 1 were generally highest within the landfill (D-92), and may therefore be affected by the landfill.

Phenol was found at its highest levels within the landfill area (D-92) and in downgradient piezometers and could therefore be affected by the landfill.

The various pesticides found in Round 1 showed no particular distribution pattern. Some were found more in the background wells (4, 4'DDE) and others in the downgradient wells (heptachlor, chlorodane). Levels tended to be highest in Piezometers S-82, D-83 and S-84, all downgradient. The effect of the landfill on pesticide levels is unclear, since none were detected in Round 2.

As mentioned earlier, the distribution of dissolved metals showed no particular pattern. Sodium levels tended to be higher in the interior and downgradient wells, as did iron levels. Other metals of concern did not appear to be affected by the landfill.

The chemical results suggest that certain wells showed relatively high levels of several constituents. During Round 1, Piezometer D-90 had the maximum concentrations for methylene chloride, total cyanide and also contained bis (2-ethylhexyl) pthalate. Piezometer D-92 had the maximum concentration of phenol and bis (2-ethylhexyl) pthalate and also contained methylene chloride.

During Round 2, Well D-89 had the maximum concentration of methylene chloride and bis (2-ethylhexyl) phthalate. One possible source is the vehicle maintenance shop located near piezometer D-89.

IV-2

WST4.HYI

C. RISK ASSESSMENT

1. POTENTIAL PATHWAYS

The potential pathways of chemical transport from the landfill are the following:

- o Direct contact.
- o Air transport.
- o Surface water runoff.
- o Groundwater transport.

Direct contact and air transport would primarily affect persons working in and around in the landfill operation and were not considered major pathways. The risk is most likely similar to operations at most municipal landfills.

Surface water runoff from the landfill primarily flows to a drainage ditch along the north side of the landfill and the south side of St. Charles Rock Road. This ditch is also occasionally recharged with groundwater. This surface water either recharges the groundwater or discharges to the Missouri River. A pond along this ditch is located on the northwest side of the landfill, and is known to contain fish. Groundwater could potentially be affecting fish in this pond, but more data is needed to evaluate this possibility. Surface water runoff to the south and southwest flows out across relatively flat agricultural

WST4.HYI

level, and some of this runoff may join the small intermittent creeks which traverse the area.

The groundwater pathway would affect persons using groundwater downgradient of the landfill before it discharges in the Missouri River.

As discussed in Part IV, Section A, no private wells have been identified. The remote possibility of future wells being located down gradient of the site should be considered when evaluating the groundwater quality.

STATE AND FEDERAL WATER QUALITY CRITERIA doungt dien To

The concentration levels of various groundwater chemical constituents found during this investigation were compared with Federal and State drinking water quality standard and recommendations. The comparison is shown on Table IV-1. The compounds listed were the major detected compounds which have water quality standards and recommendations. The maximum, or worst case, concentrations were used to evaluate the groundwater quality.

According to the available data, most of the chemicals detected in the groundwater were at levels below drinking water quality limits and guidelines. Exceptions are phenol, chlordane, 4,4' DDT and cyanide.

Phenol was considerably below federal guidelines for health and aesthetics (taste and odor) but was greater than the drinking water limit of 1 ug/1. Chlordane was detected and therefore exceeded the

proposed RMCC of 0 for potential carcinogens. The EPA Health Risk Criteria for 4,4'DDT is 0.00024 ug/l and was detected at 0.051 ug/l. Some decomposition products, 4,4'DDE and 4,4'DDD, were also detected. Total cyanide, at 7 ug/l exceeded the drinking water standard of 5 ug/l; however, the standard is based on cyanide amenable to chlorination. Arsenic, at 9 ug/l, exceeded the EPA Health Risk criteria for one in 100,000 cancer risk but was below the 50 ug/l drinking water standard.

WST4.HYI

TABLE IV-1
WATER QUALITY CRITERIA

	Max. Conc.	Well No.			er Qualit teria (ug	
Compound	(ug/1)	Round	HRC	AWQL	MDNR	Other
Methylene	83	D-90(1)				600 (RSD)
Chloride						150 (SNARL)
Bis	477	D-92(1)		15,000		
(2-ethylhexyl)						
phthalate	10	D 00(1)			•	(000 (000)
Phenol	19	D-92(1)			1	4000 (RFD)
Campa DUC-	0.100	S-82(1)	0.186			300 (T& 5) 4 (DWS)
Gamma BHC- (Lindane)	0.100	3-02(1)	0.100			4 (DWS)
Chlordane	0.258	S-82(1)	0.23			8 (SNARL)
oniordanc	0.230	0 02(1)	0123			0 (RMCL)
Endrin	0.140	S-84(1)		1		0.2 (DWS)
4,4' DDT	0.051	D-83(1)	0.00024			
Cyanide	7	D-89(2)		200	5	
•				7	(Amen to	C1)
Arsenic	9	S-84,S-88(2)	$\sqrt{0.0022}$	()	50	50 (DWS)
				(50 (RMCL)
Cadmium	3	D-85(1)		` 10	10	10 (DWS)
		4 - 1				5 (RMCL)
Lead .	13	D-91(2)		50	50	50 (DWS)
	_				5.0	20 (RMCL)
Silver	7	I-59,D-92(2)		50	50	50 (DWS)
Copper	57	I-59(1)		12 /00	1000	1000 (T&O)
Nickel	62	S-82(2)		13,400	5000	5000 (mea)
Zinc	2000	S-51(2)			5000	5000 (T&O)
Note:						

HRC - Health Risk Criteria: Cancer Risk per 100,000 population (Fed. Reg. 11/28/80)

AWQL - Ambient Water Quality Criteria (Fed. Reg. 11/28/80)

MDNR - Missouri Department of Natural Resources - Drinking Water Limits

RSD - Risk Specific Dose: Cancer Risk per 100,000 pop. (Fed. Reg. 613186)

RFD - Risk Factor Dose: (Fed. Reg. 613186)

T&O - Taste and Odor Recommendations

SNARL - Suggested No Adverse Response Levels, Long Term

DWS - U.S.E.P.A. Drinking Water Standard

RMCL - Recommended Maximum Contaminant Level (proposed - Fed. Reg. 11/13/85)

PART V

CONCLUSIONS

A. SUMMARY OF HYDROGEOLOGICAL CONCLUSIONS

Based upon information from the Burns & McDonnell investigation of the West Lake Landfill site it can be concluded that:

The alluvium of the Missouri River forms the major aquifer in the vicinity of the site. The underlying bedrock is relatively impermeable, both on the valley side slopes and the bedrock valley floor buried beneath the alluvium.

Alluvial deposits of the Missouri River are in hydraulic communication with the river, thus the river has a major influence on water leves in the alluvium. A rise in river stage during seasons of high rainfall and snow melt causes the water table in the aquifer to rise. Conversely a seasonal drop in the river stage causes the water table in the aquifer to drop. Although the rise and fall of the aquifer is less than that of the correlative change in river stage, the change in water table elevation is relatively uniform throughout the entire extent of the aquifer in the site vicinity.

The predominant direction of groundwater flow in the aquifer in the region near the site is northwestward toward the Missouri River. This predominant, regional pattern of flow is illustrated on Figure IN-1, which was made using water levels in piezometers in the Earth City area in 1976. There are broad fluctuations in this flow direction throughout the year and the predominant

7

flow direction ranges from slightly south of due west to northwest (subparallel to the northerly flow direction of the Missouri River). During short periods of the year (primarily in the spring and for short periods in winter), when the river stage is rising rapidly, the predominant groundwater flow direction in the aquifer may be temporarily reversed in the localized vicinity of the river. This occurs while the river is at a higher elevation than the water table. This generally eastward flow is of short duration and is overshadowed by the predominant westward flow at some distance from the river.

Throughout most of its extent, the aquifer is generally unconfined (under water table conditions). Relatively low-permeability, discontinuous clayey and silty zones in the upper part of the alluvium may cause semiconfined and perched water conditions in very localized areas.

Other localized effects, of only minor significance, may affect groundwater flow directions in the aquifer. As can be seen on Figure III-1 the only local feature of note is a perennial groundwater mound, superimposed on the generally westward sloping water table which predominates on the rest of the site. The groundwater mound is located on the southern part of the West Lake site, and occurs due to a localized recharge zone. This mounding is created by: (1) water pumped from the quarry being discharged at the ground surface above the mound, (2) surface infiltration from the drainage ditches along Old St. Charles Rock Road after rainfall (illustrated by cross-hatching on Figure III-1, (3) and possible leakage from the surface water holding ponds immediately west of the existing quarry (also illustrated by

cross-hatching on Figure III-1. This mound generally affects flow direction only in the upper portion of the aquifer, but may result in a significant vertical component of flow beneath the mound. The mounding effect is superimposed on the effect caused by changes in river stages and the effect of the bedrock valley. In the bulk of the aquifer, other than beneath the mound, the vertical component of flow is insignificant.

In the area of the groundwater mound, flow direction in the upper portion of the aquifer is to the south, west and north away from the mound. Flow direction lower in the aquifer includes a major component that is vertically downward near the valley wall, but is horizontal either toward or subparallel to the Missouri River at some distance from the valley wall.

Gradients in hydraulic head in the lower aquifer are, at times, extremely low. See, for example, Figure III-5. Thus, minor fluctuations in head (in the range of 1/10-foot) may be sufficient to cause major changes in flow direction. But because the gradients are very low at such times, groundwater flow rates are negligible.

At other times (see for example, Figure III-7), there may be two to three feet of differential in hydraulic head across the site. The pattern in hydraulic head distribution in the deep aquifer at such times is seen to reflect approximately the same pattern as the head distribution in the shallow aquifer (see Figure III-4). Thus, the surface water features which recharge the shallow part of the aquifer and cause groundwater in the southeastern part of the site also recharge the deeper part of the

aquifer by vertical infiltration from above. During such times, groundwater flow in the deep portion of the aquifer is laterally, away from the recharge area, predominantly to the west and northwest. During all times of measurement, the hydraulic gradients in the deeper part of the aquifer were substantially less than that in the shallow part of the aquifer.

Piezometers D-89 and I-73 are in the upgradient portion of the site, in the vicinity of the predominant recharge area of the site. Piezometers I-50 and D-91 are in an area south of the landfill where they are outside the area of influence of the groundwater flow pattern of the site. Thus, the groundwater in the aquifer there is not downgradient of the site, but is recharged from elsewhere, and samples from these wells may be considered background water quality samples for the aquifer. The surface water drainage ditches along the northern edge of the site are interconnected with the water table, and are in the downgradient area of the groundwater flow pattern. Thus, they contain not only surface water runoff, but also underflow of groundwater from the aquifer.

Based on an interpreted value of hydraulic gradient of <u>0.003</u> across the site, (considering the fan-shaped flow pattern diverging from the groundwater around beneath the landfill), a value of <u>6.35*10**</u> cm/sec for hydraulic conductivity of aquifer materials, a saturated thickness of <u>95</u> feet, and a site perimeter length of <u>6900</u> feet, the flow rate is calculated to be <u>27000</u> gallons per day beneath the entire site. For an assumed value of <u>0.20</u> for effective porosity, the groundwater flow velocity is calculated to be <u>75</u> feet per year.

B. SUMMARY OF GROUNDWATER QUALITY

- Methylene chloride was the only detected priority pollutant volatile organic chemical. In Round 2, the detection of methylene chloride was accounted for by its concentration in blank samples.
- 2. During Round 1, methylene chloride had a maximum concentration in Piezometer D-90.
- 3. The compounds bis(2-ethyl hexyl) phthalate and phenol were found at the maximum concentration at Piezometer D-92 during Round 1.
- 4. The general distribution of organic constituents was scattered and irregular. In general, phenol and methylene chloride were found to be slightly higher in downgradient wells during Round 1. The landfill is a possible, but not certain, contributor.
- 5. The distribution of dissolved metals was irregular and significant differences were not detected between the background, upgradient and downgradient wells.
- 6. Many chemical constituents were detected in the deep wells but no significant increase was detected between the deep wells and the shallow wells.

- 7. More chemicals were detected during Round 1 (December 1985) at greater concentrations than during Round 2 (May 1986).
- 8. A variety of pesticides were detected during Round 1 at various locations, especially Piezometers S-82, D-83 and S-84. The source of these pesticides is unknown. W detection in Normal 2
- 9. Compared to state and federal drinking water standards, the levels of chemicals found in the groundwater do not appear excessive. Some of the pesticides, such as chlordane and 4,4' DDT, exceeded recommended levels.

 for cancer risk.
 - 10. Surface water and groundwater are connected in the drainage ditch running along the north side of the landfill. A pond connected to this ditch, located on the northwest side of the landfill, contains fish which could be affected by the groundwater.
 - 11. No water supplies using groundwater downgradient of the landfill have been found.

C. PROPOSED GROUNDWATER MONITORING PROGRAM

The purpose of the proposed groundwater monitoring plan is to evaluate the effect of the landfill on groundwater quality through long-term monitoring. Certain constituents detected during this investigation will also be resampled to clarify differing results between Round 1 and Round 2.

The components of the proposed plan are as follows:

1. SHORT-TERM MONITORING

The following piezometers will be resampled and analyzed for the listed constituents:

I-59: Volatile Organics

D-81: Volatile Organics

S-82: Pesticides

D-83: Volatile Organics

S-84: Pesticides

D-87: bis(2 ethylhexyl) pthalate

D-89: bis(2 ethylhexyl) pthalate, volatile organics

D-90: bis(2 ethylhexyl) pthalate, volatile organics

D-92: bis(2 ethylhexyl) pthalate, volatile organics

Based on this data, the long-term monitoring plan will be revised appropriately.

Also, because of the presence of fish in the surface pond to the west of the landfill, ,the fish should be sampled and analyzed for the following constituents:

Priority pollutant pesticides

Priority pollutant metals

gross alpha and beta radiation

From this data, a decision can be made on whether or not fishing should be allowed in this pond.

V-7

WSTCON.HYI

2. LONG-TERM MONITORING

e moni R

The following piezometers shall be sampled on a quarterly basis:

S-84, D-85: north of landfill

S-82, D-93: west of landfill

D-89: upgradient

D-91: background

D-92: within landfill boundary

The samples will be analyzed according to MDNR parameters for landfill monitoring. In addition, the water level will be measured in each well before sampling.

An analysis of the results will determine if future remedial action is needed at the site.

Mary on

REFERENCES

- 3. Anderson, Kenneth, et al, <u>Geologic Map of Missouri</u>: Missouri Geological Survey and Water Resources. Scale 1:500,000. 1979.
- 4. Koenig, John W., <u>The Stratigraphic Succession in Missouri</u>, Missouri Geological Survey Bulletin 15, 2nd Series. 1961.
- 5. Miller, Don E., et al, Water Resources St. Louis Area, Missouri, Water Resources Report No. 30, Missouri Geological Survey and Water Resources and the U.S. Geological Survey, 1974.
- 6. Gann, E. E., et al, Water Resources of Northeastern Missouri, Hydrologic Investigations Atlas HA-372, U.S. Geological Survey and the Missouri Geological Survey and Water Resources, 1971.

* * * * *

APPENDIX A

CRITERIA FOR LOGGING OF SOIL AND ROCK BORING LOGS

LEGEND AND NOMENCLATURE OF DRILLING LOGS

Information preceding the logs relates to pertinent project and boring descriptions, which are self-explanatory. Remaining items on drilling logs are described as follows:

- 1) <u>DEPTH</u>: Depth below a given reference elevation. Normally, units are in feet and are from the aforementioned ground surface, unless otherwise noted.
- DESCRIPTION: Description of soil or rock material according to Unified Soil Classification. Word descriptions give principal soil constituent, other minor soil constituents, color, moisture, consistency or density, plasticity, and other appropriate material characteristics. Geologic names, where appropriate, are shown in REMARKS. A solid line denotes a stratigraphic change, a dashed line indicates the approximate location of a stratigraphic change. Rock samples are described according to lithology, color, moisture content, weathering, strength, and any discernible structure. Criteria for evaluating weathering and strength (established by the U.S. Bureau of Mines,) are as follows:

Weathering:

FR: (Fresh) No visible signs of weathering.

SW: (Slightly Weathered) Weathering (alteration) limited to the surface of major discontinuities, no weathering of rock material.

MW: (Moderately Weathered) Weathering (alteration) extends throughout the rock mass, but the rock material is not friable.

HW: (Highly Weathered) Rock is decomposed and friable, but the rock texture and structure are preserved.

XW: (Extremely Weathered) Soil material with the original texture, structure, and mineralogy of the rock completely destroyed.

Strength: VS: (Very Strong) Rock surfaces cannot be scratched by a steel nail.

S: (Strong) Faint scratch made with a steel nail.

MS: (Moderately Strong) Distinct scratch trace made with a steel nail.

W: (Weak) Slight scratch left by fingernail, material can be gouged out with steel nail.

VW: (Very weak) Material can be gouged out with fingernail.

3) LOG OR CLASSIFICATION: Unified Soil Classification symbols are shown in reference to appropriate description of soil.

Rock material is noted by visual symbols (referenced from NAVFAC DM-7 Manual, March 1971, with slight revision) representing rock classification, as shown below:

	SANDSTONE		SILTSTONE
6.00°	CONGLOMERATE		MUDSTONE
	COAL		DOLOMITE
	LIMESTONE		CHALK
	COMPACTION SHALE		CEMENTED SHALE
	GNEISS	VIIII	SCHIST
	GRANITE		BASALT

- Numbers indicate the necessary blows to drive 3 six-inch increments, or part thereof, of a split barrel sampler when driven by a 140-pound hammer falling freely for 30 inches: as per ASTM D 1586. The Standard Penetration Resistance (N value) is the sum of the second and third six-inch penetrations. If the sampler is driven less than 18 inches, the N value is represented by the total resistance over the last 12 inches. If the sampler is driven less than 12 inches, logs indicate the number of blows and fraction of increment in inches actually penetrated. Note that a blow count can be listed for a California or Dames & Moore sampler, but that this is not the Standard Penetration Resistance.
- 5) RECOVERY & LOSS: In soil this represents the total length of soil recovered over the amount of sample penetrated.

 In rock this notes the percent core recovery and Rock Quality Designation (RQD).
- 6) SAMPLE DEPTH: A column that provides a reference to the depth below the previously mentioned reference elevation at which samples were taken.
- 7) BOX SAMPLE NO: In the case of rock coring, the box number and core run number are noted. For soils, the designated type and consecutively numbered sample are noted by the following letter;
 - SS Split-Spoon sample, obtained by driving a 2-inch diameter split spoon according to D 1586 to retreve penetration resistance and sample recovery.
 - ST Undisturbed thin-walled tube sample (Shelby Tube)D 1587, obtained by penetration of a 3-inch diameter thin-walled tube using an open or, where indicated, fixed piston sampling head.
 - C Continuous sampler: obtained by drilling a 5-foot long, 2½-inch I.D., CME split barrel sampler into the soil material.
 - DM Liner tube sampler (Dames & Moore), obtained by penetration of a thick-walled, split-barrel sampler containing 2½-inch diameter ring liners.
 - B Bag Sample, obtained by combining disturbed auger cuttings for a large bag sample.

- D Disturbed Sample, obtained from auger cuttings or wash water for a small container sample.
- -J Jar Sample, obtained from any other sample method, but later placed into a jar container due to sample size or disturbance.
- 8) REMARKS: Pertinent observations made and noted by the inspector during drilling. These may include, but are not restricted to, type of drilling, water seepage, fluid loss, time during drilling, material formation, hole termination, pocket penetrometer readings (TSF), piezometer installation, water levels first encountered during drilling and at some time after completion of drilling, and any other pertinent information.
- 9) SOIL STRENGTH: Q_n is the designation of soil strength as measured with a pocket penetrometer. Units are in tons per square foot.

Drilling Log

Project Na	me	WESTL	AKE					Bor	ring No.	-80	
Project No).	84-07	5-4-0	02				Pag			of 2
Bround Ele	evation	448	Locat	ion 2592,796	2 E.	26/9.	0159	Tot	al Footag		2.0
Drilling *	Туре	Hole Size	Overburden Footag					loxes	Depth 1	o Water	Date Measured
SOLI	V	5"	22.0	0	,	4	0		REM	_	_
illing Co.		A BASH D	1		<u> </u>	Driller (s				NTON	!
rilling Rig		CKER MP		~		Type of				DARI	
ate		-28-84		3-29-84			server (s)				TMANN
						Blow			Sample		<u>·</u>
Pepth			Description		Class.	Count	Recov.	<u> </u>	or Box No.		Remarks
	LIGH LOW BAN GRA		FINE SA TY VER	NDY SILT, Y LOOSE,		2/2/	2 18"	5.0	55-2	l	0 20°,
13	GRAY	Y-BROWN F	INE SAND	Y SILT, SOME							

	Diming Log (commodu)										
			Bori	ng No. 5- 80							
Project	Name WESTLAKE					Page	2 of 2				
Project	No. 84-075-4-002					Date	8-28-84				
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	Sa	ox or imple No.					
·5	GRAY BAOWN FINE SANDY SILT, SOME CLAY, VERY SOFT, SATURATED				15,0		SATURATED MATERIAL @ APPROX, 141.				
٠٥ =				16" 24"	s	t-3	Qp= 0.0 to 0.5 tsf				
17		-			7.0		STOPPED 8-28-84 RESUMED 8-29-84				
18	GRAY SILTY CLAY, MEDIUM TO HIGH PLASTICITY, MEDIUM						WATER ENTERED HOLE TO A DEPTH OF 15/5' AFTER SAMPLE ST'3 WAS OBTAINED.				
20	STIEF, SATURATED						WATER LEVEL BEFORE DRILLING 7:00am 0-29-94; 12-9' BELOW G.S.				
21				24"	= = = = = = = =	r-4					
22				2	2.3	_					
23	TOTAL DEPTH 22.0'						A 2" 110, PYC				
24							installed to 20%				
25	<i>(</i>						and 1' of bentonite pullets were implaced in bottom of hole.				
27							PUC is filxch - jointed threated couplings.				
28=	·				11111		Bottom 10 14.010" machine slotted screen. Buttom 11 is:				
27							gravel packed with a 2' think betten above. Anulus is apouted				
30						- 1	Trom Seal to surface Trope is 5' above 3.5. WATER LEVEL IS 18.17 BELOW Trope.				
					_=		IMMEDIATELY MATER PIEZOMETER INSTALLATION 7700				

Drilling Log

Project Name	WESTLA	KE		<u></u>			Bor	ing No.	D - 8	31	
Project No.	84-07	5-4-00	2 -				Pag	je	1	of 4	
Ground Elevet	on 447	Locatio	n 144.2728 _ E	- GZ	2 614	15.	Tot	al Footag	61	,5'	
Drilling Type	Hole Size	Overburden Footage			Samples No. Core Bo		Зохев	Depth 1	ro Water	Date Measu	red
s ēē Remark	S REMARKS	61,5	. 0	1	/ .	0		SE REM	SÉE REMARKS		
Orilling Co.	WABASH	DRILLIN	G CO.		Driller (s) Do	RL		RNTO	N	
Orilling Rig.	ACKER A	NP-5,	TRUČK		Type of Penetra	tion Test	2	STANDARD			
Date	8-13-8	4 To 8-	15-84		Field Ob	server (s)	G	LEN	ERN	STMAN	N
					Blow			Sample or			
Depth		Description		Class.	Count	Recov.	ļ	Box No.		Remarks	
2 3 4 5 6 7 BF	ROWN FINE LASTICITY, RAY BROW NAX, 2" DIA RAUEL AND ILL)	DAMP (E GRAVEL FINE DAMP						5" s	0 LID AV	ાલ્ફા
9					•	.	- =			•,	
II FIE	OWN FINE TO DIMM DENSI L) OWN CLAYEY DIST (FILL)	E TO LOO	SE, DAMP		5/5/		0.0	SS- I	STOP		
/2 - BB	OWN SILTY ID, MED) UM TURATED	DENSIT						i	SATUR MATER	IAL FIRE	s r

	Drilling Log						
						Boring	1 No. D- 81
Project	Name WESTLAKE					Page	2 of 4
Project	No. 84-075-4-002			0		Date	8-13-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	l ISa	ox or imple No.	Remarks
15 14 17 17	BROWN SILTY FINE TO MEDIUM SAND, MEDIUM DENSE SATURATED BELOW APPROX, 13.		3/5/7	14"	5.5	5-2	BEGAN 41/2" DIA. TRI-CONE, WASH BORING O 15', CONTINUED TO
19	BROWN FINE TO MEDIUM SAND WELL SORTED, SUBROUNDED GRAINS, MEDIUM DENSITY, SATURATED		6/0/4	(5) (8)		5-3	
23			9/14/15	10"		5-4	
29- 30-	GRAY FINE SAND, TRACE SILT SAND IS H. GHLY QUARTZOSE MEDIUM DENSE, SATURATED		10/12/5	<i>ιլ~</i> 8"	30.0	5-5a	

<u>.</u>	Drilling Log	(60)							
	<u>_</u>		····			1	ng No. D		
Project						Page		of 4	
Project	No. 84-075-4-002	 -		Core	T Te	Date lox or		13-8	4
Depth	Description	Log or Class	Blow Count	Recov.	s	Mo.	ļ	Remarks	
35	GRAY SILTY CUAY MEDIUM TO HIGH PLASTICITY, ETIFF TO MEDIUM STIFF, MOIST TO SATURATED			•	3/.5	55-57	\$		
33				·					
34 -	GRAY SILT AND SAND INTERBEDS, SILT IS LOW PLASTICITY, VERY LOOSE, SATURATED			,	5.0	,			,
34-			*0/-/4-	*0"18"		5-4	SE-G HTTE!	WHEN SI WAS F MPTED.	AMPLE FIRST NO
37 -			•				RECOV ATTEN WEAE SACK	ERY ON MPT SO DROPPE DOWN -	FIRST RODS D THE
38						¥.	OBTA	HEAS	
40 =	·		•		40.0				
41	GRAY FINE TO COARSE SAND,	,		8/0	\$1.5_	T-7	Qp =	NoA.	·
42 -	SUBANGULAR TO SUBROUNDED GRAINS HIGHLY QUARTZOSE, SATURATED								
43-	GRAV SAND AND COAVER ()	•			7111		,		•
44	GRAY SAND AND GRAVEL (I" MAK,) SATURATED		. •		1111		•		
45	GRAY COARSE SAND, SOME MEDIUM AND FINE SUBROUNDED TO SUBANGULAR, DENSE		15/20/8	7" 18"	\$,6	s -8			
47	(SEE DESCRIPTION BELOW)			7	5111111				

111479

GRAY SAND AND FINE GRAVEL INTERBEDS, SAND IS FINE TO GRAVEL IS SURROUNDED, QUARTIZOSE GRAVEL IS SURROUNDED, QUARTIZOSE SUBROUNDED, QUARTIZ, FLLDS PAR AND SOME MATIC MINERALS, DENSE TO VERY DENSE, ST ST GRAY-BAOWN FINE TO MEDIUM SQND, VERY DENSE, SATURATED GO GO GO GO GO GO GO GO GO G		0 01	<u> </u>		eu)		(60	Drilling Log	
Project No. 84-075-4-002 Depth Description GRAY SAND AND FINE GRAVEL INTERBES, SAND IS FINE TO GRAVEL IS SUBANGALAR TO SUBANDARY, PEASE, SATURATED SATURATED SOLUTION SATURATED SOLUTION SATURATED SOLUTION		1.							
Depth Description GRAY SAND AND FINE GRAVEL INTERBELS, SUBROUNDED, QUARTZOEE GRAVEL IS SURROUNDED, QUARTZOEE GRAVEL IS SURROUNDED, QUARTZOEE GRAVEL IS SURROUNDED, QUARTZOEE SATURATED SO AND SIME MARIC MINERALS, DENSE TO VERY DENSE, 51 SATURATED ST 18" SS-10 SS-74 C SAND SS-75 C SAND SS-7		0 12 1		-					
Depth Decription GRAY SAND AND FINE GRAVEL INTERBEDS, SAND IS FINE TO COARSE, SUBQUINDED, QUARTICSE GRAVEL IS SURANGULAR TO SUBQUINDED, QUARTE, FELDSPAR AND SOME MAFIC M. WERQLS, DENSE TO VERY DENSE, STATURATED ST	70	6-13-1	Box or		Core	1	Log	No. 84-073-4-002	Project
INTERBEDS, SAND IS FINE TO COARSE, SUBROUNDED, QUARTICOSE GRAVELL IS SUBRANGHLAP TO SUBBOUNDED, QUARTE, PELDSPAR AND SIME IMATIC MINERALS, DENSE TO VERY DENSE, SATURATED 53 54 55 57 58 57 58 57 58 57 58 57 58 57 58 57 58 58	rks	Remark	Sample		Recov. & Loss	Blow Count	or Class	Description	Depth
SUBDOUNDED, QUARTE, FELDS PAR AND SIME MATIC MINERALS, DENSE TO VERY DENSE, SATURATED SS-94 + SAND AND SS-94 + SAND SS-94 +								INTERBEDS, SAND IS FINE TO	49 =
550 560 570 570 570 570 570 570 571 570 571 570 571 571 571 570 571 571 571 571 571 571 571 571 571 571		-	-1	20. 0		10		SUBROUNDED QUARTE, FELDS PAR	50 _
550 561 571 571 571 571 571 571 571 571 571 57		a GRAVEL	- 55-90	=	10"	18			
550 561 571 571 571 571 571 571 571 571 571 57	7	+ SAND	- - - - - - - - - -	=	18"	22		SATURATED	51 =
55 55 55 55 55 55 55 55 55 55 55 55 55	٠. ٠	•		15					52-
58 56 57 58 57 GRAY-BAOWN FINE TO MEDIUM SAND, VERY DENSE, SATURATED GO GT 60 GT 58 58 58 58 58 58 58 58 58 60 A 2" dia A 2" dia PVC is PVC is									
55 - 56 - 57 - 58 - 57 - 58 - 58 - 58 - 58 - 58		·							53
50 SS-10 PORTALISED 57 SRAY-BAOWN FINE TO MEDIUM 59 GRAY-BAOWN FINE TO MEDIUM 59 SAND, VERY DENSE, SATURATED 60 STORM SEAL OLD 44 18" SS-11 Grown Seal old 44 18" SS-11 Grown Seal or Grown Seal									54
57 58 57 GRAY-BROWN FINE TO MEDIUM SAND, VERY DENSE, SATURATED 60 61 61				5.0	3	13			55 _
57 58 59 GRAY-BAOWN FINE TO MEDIUM SAND, VERY DENSE, SATURATED 60 61 61 57 GRAY-BAOWN FINE TO MEDIUM SAND, VERY DENSE, SATURATED 61 58 FVC is JOINT, the JOINT,	2KW 19	A 2" diai piezomète	SS-10		18"	37			56=
GRAY-BAOWN FINE TO MEDIUM SAND, VERY DENSE, SAYURATED 60 14 20 18" SS-11 Grovni Anulus 1: from sea grovni	12ch -	PUC is +		6. <u>5</u>	:				\exists
SO SOND, VERY DENSE, SATURATED 61 61 60 60 60 60 60 60 60 60		couplings.			\ 		1		57
GRAY-BAOWN FINE TO MEDIUM SAND, VERY DENSE, SAYURATED 60 14 20 18" SS-11 Gravel po benton. T seal ab 44 18" SS-11 Grownd	chine	+010" ma					• ·		58
GRAY-BROWN FINE TO MEDIUM SAND, VERY DENSE, SATURATED 60 14 20 18" SS-11 Grown Sea ground	1,5' is	BOTTOM 17	-			,			F 0
60 14 80,0 Seal at. Anulus 1: Tom sea ground	3' thick	with a 3] -					GRAY-BROWN FINE TO MEDIUM SAND UFRY DENSE , SATURATED	>7
Gr- ground	₩è.	seal abs	<u> </u>	0,0		14			60=
Grand de de la contra del contra de la contra del la contr	y To	from seal	- SS- 11	,	8"	20			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	3'.	Tiore is			'	74			61
TOTAL DEPTH: 61.5	and auttace	above gro:		, 	٠.			TOTAL DEPTH 61.5"	62
43 WATER LEV 16:43' BEL 3:05 pm 8-	15-83	WATER LEVE 16.43' BELO 3:05 pm 8-1		1111	_				43
C4 hes afte	ं 1ंग्डीवशिक्ती व	(4 hest after							64

Drilling Log

roject Name	WESTLA	KE				. —	Bori	ing No.S	-82	
roject No.	·	5-4-00					Pag			of Z
round Elevati	on	Location	<u>-</u>			•	Tota	al Footage	θ	6.5°
Drilling Type			5 9 9 - 1 5 8 0 , Bedrock Footage			No. Core Bo	OX68 T	Depth T	o Water	Date Measure
SEE EMARK	STE		O	40.0		0	3,03	SE		
ling Co.	WABASH	·	JG CO.		Driller (s		R L		RNTO	
lling Rig.	ACKER	MP-5,	TRUCK		Type of Penetral	ion Test	ST	AND	ARD	
te	8-24-84	To 8-	27-84		Field Ob	server (s)	GI	EN E	RNST	MANN
					Blow	•		Sample or		
epth		Description		Class.	Count	Recov.		Box No.		Remarks
2 3 4 5 C 7 8 9	RAVEL ME STIFF TO I TO MOIST (NON-PLAS O SATURA	SANDY SI	LT, LOW		5/4/	14"		55-1	SATU MATI	RATE DERIAL POUNTERS
2	·		×		2/3/	3 17" 18"	1.5	53-2	13' 1 4NS	, ATH RATE P TO IT',

	Drining Log	, (00.					
						Bori	ng No. 5-82
Project	Name WESTLAKE					Page	2 of Z
Project	No. 84-075-4-002					Date	8-27-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.	
15	BROWN SILTY CLAY MEDIUM PLASTICITY, VERY STIFF.] '	3/2/3	14"	5.0111	55-3	
17 18	BROWN-GRAY SILTY FINE TO MEDIUM SAND, MEDIUM DENSITY, SATURATED			,	6.5	3-3	SATURATED MATERIAL BELOW APPROX, 17' TO 18'.
20 -			4/7/12	15" 18"	20.0	5-4	CASING WAS DRIVER TO 20' 4 HOLE WAS WASH- BORED FROM 20' TO 25', STO PPED 8-24-84
23 24	GRAY-BROWN COARSE SAND, SOME FINE TO MEDIUM SAND, MEDIUM DENSITY, BATHRATED						RESUMED 8-27-84 NOTE; HOLE HAS COLLAPSED TO 13.3' BELOW G.S. OUER THE WEEKEND.
25-	PRIMARILY QUARTZ, SOME CHERT FRAGMENTS AND MAFIC MINERALS GRAY, SILTY FINE TO MED. SAND, SATURATED		7/4/29	17*	25.0 	65-50 6-51	Botrom 10' is .010"
27	TOTAL DEPTH 26.5'				5		machine slotted screen. Bottom 12.5' is gravel packed with 2. thick bentonite pellet seal above.
30-	·					Ì	Anulus is grouted from soal to surface. Tio.P. 18 3.0 above ground surface. WATER LEVEL 15 18.2 BELOW TO.P. IMPERIATELY AFTER PIEZOMETER
	Barns & M	(S) onnei					Trom seat Troit is a ground su WATER LEVI BELOW TOO

Drilling Log

roject Na	ame	WESTLA	KE		. ,-		<u></u>	Во	ring No.D	- 83		
roject No		84-075	\$ 10°	,			<u> </u>	Pag			of 7	
round El	evation	4.44.4-	Location					Tot	tal Footag	e //	5,3	
Drilling	Туре	Hole Size		742,7093				oxes	Depth 1	o Water	Date Me	easured
REMA	Ē ,	SEE	115,3	0	1	6	0	•	SE	EARKS	0 -	-
rilling Co			RILLING	60.	 	Driller (s) PO	RL	<u> </u>	RNTOA	,	
illing Rig			P-5, TI			Type of Penetra				ARD		
ate	8-	-16-84	то 8-	20-84		1	pserver (s)	G	LEN I	ERNST	MPN	√
						Blow			Sample			
epth	= 1		Description		Class.	Count	Recov.		Box No.	-	Remarks	
,	DROV	N FINE	TERIAL, S	AMP	•					5" DI	A. 50	C1D 10/5
=	BADU	VN SILFY	FINE SI	END BAME				=				
≥ ☐		·		,				=	}			
\exists								_	1			
3 =								=				
\exists	LIGH	T BBDWA	U FINE TO	MEDUM				Ξ]			
4 =	SAND	TRACE	SILT, LO	OSE TO				_	-			
\exists	MED	IUM DEN	SITY, DA	MP ROY, 10.5				Ξ	<u> </u>			
5 =	>~'`	KHIEF D	e cow					5.0-		•		
\exists						3/3/	3 17"	Ξ	55-1			
¢ =							18"	=	33-1	,		
\exists								65 <u>-</u>				
ァゴ								=	-			
3				10				Ξ]			
8 =				•				=	<u> </u>			
\exists				***				=	.			
7 =		•						=	1		-	
\exists								=	<u> </u>	MATE	RIAL	
10 =								o, <u>=</u>		ANCO AP		
\exists						3/4/8	3 16" 18"	- =	ø \$5.ጂ	_ '''		•
′′∃					ļ	~, ·,	18"	=	ے در		٠.	
. =			·		-			11.5		•		
' 2=				أغيم				=	.			-
			•]			=				
′ 3∃		T BROWA	FINE S	ND TOG				=			;	•
\neg	LIGH											

Γ						Borin	ng No. D = 83
Project	Name WESTLAKE	\				Page	2. of 7
Project	0 + 0 - 5 - 4 003					Date	8-16-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	Sa	ox or imple No.	Remarks
	LIGHT BROWN FINE SAND INTERBEDDED WITH THIN (3" TO G") CLRY SEARS, SATURATED BROWN SILTY CLAY, MEDIUM PLASTICITY, MOIST		3/0/5	1 <u>5"</u> 18"	5,0	5-3a	BEGAN 4/2" P/A, TRI-CONE WASH BORING @ 15' TO
17 18	LIGHT BROWN FINE TO MEDIUM SAND, TRACE SILT, MEDIUM DENSITY, SATURATED		(5		6.5 	\$-31	STOPPED 8-16-89 RESUMED 8-17-89
19	FINE TO COARSE SAWS AND FINE GRAVEL, SATURATED			-			
21-	BROWN TO GRAY FIVE TO MEDIUM SAND, TRACE SILT, DENSE, SATURATED		19/9/24	15" 18n	24,5	5-4	
23-	GRAY - BROWN MEDIUM TO COARSE SAND, SOME FINE SAND, FEW THIN (3" TO 8" THICK) FINE GRAVEL SEAMS (3/4" MAX, DIA.), MEDIUM DENSE				55.0		
24-	SAND IS PRIMARILY QUARTZ, SOME FELDSPAR AND INAFIC MINERALS, SUBROUNDED TO SUBANGULAR GRAINS		9/0/0	13" 18"	5.55 	5-5	
28 <u> </u>							
30 =	GRAY FINE TO MEDIUM SAND, TRACE SILT AND COARSE SAND, PAIMARILY QUARTZ, DENSE, SATHRATED	E	10/15/17	8" 18"	0, <u>0</u>	5-4	

	Diming tog								
				" .		Borin	g No. D	-93	
Project				<u>.</u>		Page	3	of	7
Project	No. 84-075-4-002		,			Date	<u> </u>	-16-	84
Depth	Description	Log Or Class	Blow Count	Core Recov. & Loss	Se	ox or imple No.		Remar	ks
					31,5	s-6			
32 -	GRAY FINE TO MEDIUM SAND, TRACE SILT AND COARSE SAND, PRIMARILY QUARTZ SAND,					}			
34=	BENSE, SATURATED		 						
35=	*		9,		5.0				
36-			9/15/21	<u>9</u> n 18"	36.5	5-7			
37	•								
38 -									
39 -	GRAY-BROWN MEDIUM TO COARSE SAND, FEW FINE GRAVEL SEAMS, PRIMARILY QUARTE, WITH SOME		10	4	•, •				
4,=	FELDSPAR, SUBROUNDED TO SUBANGULAR GRAINS, DENSE, SATURATED		19/13/17	19 ⁿ	s	S-8			
42									
43		11/2					To a	. *	·
44	GRAY-BROWN FINE TO COARSE SAND AND FINE TO COARSE GRAVEL (3" MAY, DIA.). DUADTZ								
46	GRAVEL (3" MAY, DIA.), QUARTZ, FELDS PAR, AND MAFIC MINERALS SUBANGULAR GRAINS, MEDIUM DENSE, SATURATED	•	~\0\n	9 u	(S.O.)	5-9			•
*/7	•				14.5				
=							•		

× ,

		, (30							
						Borir	g No.D	83	
Project I	Name WESTLAKE					Page	4	of	7
Project I	No. 84-075-4-002					Date	8	-16-	- 84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.		Rema	rks
49 50 50 50 50 50 50 50 50 50 50 50 50 50	GRAY-BROWN FINE TO COARSE SAND AND FINE TO COARSE GRAVEL AS DESCRIBED ABOVE GRAY FINE TO COARSE SAND, MEDIUM DENSITY, SATURATED		47/11	9/8	50.0	S-10			
57 58 59 60 6 2 63 64	SAND AND GRAVEL, SATURATED GRAY SILTY FINE TO MEDIUM SAND PRIMARILY QUARTE, VERY DENSE, SATURATED SEVERAL THIN (2" TO 6" THICK FINE TO COARSE GRAVEL SEAMS		3/50°s	7"		S-11			

						Borii	ng No.D	- 83		
Project	Name WESTLAKE					Page	_5	of	7	
Project	No. 84-075-4-002			·		Date	8	- 16-	-84	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.		Rem	arks	
46	GRAY SILTY FINE TO MEDIUM SAN PRIMARILY QUARTE, VERY DENSE	D,			1111111		٠			
48	SEVERAL THIN (3" TO G" THICK) FINE TO COARSE GRAVEL SEAMS AND COARSE SAND SEARMS				1111111					
69	•		<u> </u>							!
71-	:		14 19 22	7"		SS-12				
72										
73	<i>C</i>					`				
75	ţ									
74 -	GRAY-BROWN COARSE SAND				11111					
78	SOME FINE TO MEDIUM SAND AND FINE GRAVEL, QUARTE, FELDSPAR AND SOME MAPIC MINERALS, SUBROUNDED, MEDIUM DENSITY TO DENSE,						URG LEAS COOK	ANIC HATE IN 9	.16HT OR - LIKE FAMPLE 55-13	s .
80	SATURATED				&					
81			3/4/4	81.		5-13				

				-\$		Bori	ng No. D- 83]
Project						 Page		1
Project	No. 194-075-4-002		2	,		 Date		
Depth	Description 6	>	bog Or Class	Blow Count	Core Recov. & Loss	Box or Sample No.	Remarks	
83 9 86 97 88 99 90 91 92 93 94 95 96 97 98	GRAY-BROWN COARSE SAN SOME FINE TO MEDIUM SAND FINE GRAVEL, QUART FELDS PAR, AND SOME MAP, MINERALS, SUBROUNDED, MEDIUM DENGITY TO DESATURATED OCCASIONAL GRAVEL SEAM 4" THICK), 92' TO 104',	ENSE,		4/4/7	8 18" G	55-14	NOTE: MODERATE TO STRONG LEACHATE LIKE ODDR IN SAMPLE SS -14	

						·		
						Borin	ng No. D- 8	3
Project	Name WESTLAKE					Page	フ。	f 7
Project	No. 84-075-4-002	,				Date	8-16	-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.	Ren	narks
10 I	GRAY-BROWN CORRSE SAND, SOME FINE TO MEDIUM SAND AND FINE GRAVEL, QUARTZ, FELDSPAR AND SOME MAFIC MINERALS, SUBROUNDED MEDIUM DENSE TO DENSE, SATUPATED OCCASIONAL GRAVEL SEAM (3" TO 4" THICK), 92" TO 104".		18,	1	0.01	55-15	RATE 9	
104-	·						MUCH SC DRILLING 100' To , piezomet installed Puc is f jointed,	PVC PVC PVC PVC PVC PVC PVC PVC
107-	*			54	0.0		couplings 20' is slotted Gravel 11 100', Ben pellets 1 Gravel pa 75.5' wi thick be pellet si Anulus from se	5.3' to Tonite 00' to 99 1ck 99' 1 Th a Z' entonite eal about
112	GRAVEL AND SAND SOME SILT, DENSE, SATURATES		24/22/27	3/8		5s-1 c	ground s Tro.P. 15 above gr surface	3.2'
114	CREAM LIMESTONE	,					WATER LIMMEDIA PIEZOME INSTALLI B-21-84) 14,50 BI	tely aft ter fd/2:05-

Project Name	WESTLA	KE					Во	ring No	- 84		
Project No.	84-07	5-4-00	2			*	Pag	ge	1	o ¹ 3	
Ground Elevation	452.	Location 4	340.0038,	E. /	998.Z		Tot	al Footag	31,	5	
Drilling Type	Hole Size	Overburden Footage					Boxes	L	o Water	Date Me	easured
REMARKS	5"	31.5	0		4	0		SE	ARKS	_	•
Drilling Co.	UABASH	DRILLIN	6 60-		Oriller (s		RL	THOR	NTON	! 	
	CKER MI				Type of Penetral	tion Test		HND			
Date 8	3-24-84	To θ	24-84		Field Ob	server (s)	ے ہ	LEN 1	ER NS	TMAN	IN
Depth		Description		Class.	Blow Count	Recov.		or Box No.		Remarks	
GRA GRA GRA GRA GRA GRA GRA GRA	ENISH GRENISH	P TO DAY	ARK GRAY. RY LOOSE,		2/2/	2 18"	5.6		FEW SATU	THIN RATED V	DES

					· · · · · · ·	Bori	ng No.S-84
Project	Name WESTLAKE					Page	
Project	54 55 4 303					Date	8-24-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss		Box or Sample No.	Remarks
15	GREENISH GRAY SILTY FINE SAWD, ZONES OF DARK GRAY CLAYEY SILF, MOIST TO SATHRATED (FILL)			24" 24.	5.0	S1-2	Qp = NIA,
79 20 21 22 23 11 24	GRAY - BROWN FINE TO MEDIUM SAND, TRACE SILT, MEDIUM DENSE						ALL MATERIAL SATURATED BELOW APPROX. 20',
24	GRAY MEPIUM TO COARSE SAMP, MEDIUM DENSITY, SATURATED		9/9/2	2 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.6	25 - 3	APPROX, & FT, OF SLOUGH IN HOLE WHEN SAMPLE SS-4 WAS FIRST ATTEMPTED. CASING WAS DRIVEN TO 30' THEN SLOUGH WASH-BORED OUT W/ TRICONE GIT,
30 =			5/6/9	184	0.0	<i>5</i> 5-4	NO BENTONITE WAS

						Bori	ng No.S-	<u>84</u>	
roject Name	WESTLAKE					Page	3	of	3
Project No.	84-675-4-002					Date	ક- <u>ટ</u>	4-8	4
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	-93	Box or ample No.		Remar	ks
=	SEE ABOVE?			3	1,5	55-4			
32]					
^ `∃	TOTAL DEPTH 31.5'				\exists				
, , =					=				
33 🗒					\exists		4 2"	diai	PVC .
_ ∃							PIEZO	me 74	pyc r was o 30.9
34 🗏					=		****	,,,,,	5 70.7
7					7	}	Joint	64).	ish - tureade
35 =				}	\exists		coup	lings	Botte
=							MECH	146	clotted
३ <i>७</i> 🗆					=		scree		•
\equiv					\exists		Grav	el pa	ck 31.3 with a
37					⇉		1.8	thic	k bonton
			}		╡		pelle	t sea	l above
38					\exists		from	65 15	groute d
= =			}		Ⅎ		de nu	d su	to rface.
5a =					⇉		T.O.P.		
39 =					\exists				
. 3					\exists		above surf	ice,	
40 =					=				
7					\exists				
3									
#					ヸ	- 1	IMME)/A ~ /	UE L E L Y
=		Ì			\exists		MFTER	PIE	ZOMETE ON 15
3					\exists		23,7	BEL	ON 13 OW T,O,P
#									4-84.
7					ヸ				
\exists					\exists	İ	WATER	LEVE BFLI	L 15) W T.O. f
#					\exists	}	7:15 ar	8-3	7-84
=					ヸ				
=					\exists	1			₹
7					=	ł	:		
=					\exists	ļ			-,
\exists					\exists				
-					\Box				

	 -		ſ							
Project Name	WESTL	AKE					Bor	ing No.	- 85	•
Project No.	84-07	15-4-00	2		4	. •	Pag) 0	ท	of G
Ground Elevation	/ in .	Location	340.5414		1901	RUZA	Tot	al Footag	94	7.1
Drilling Type	453.1 Hole Size		Bedrock Footage				xes	Depth T	o Water	Date Measured
SEE REMARKS	SEE REMARKS	83.5	0.6	1,	2	0		REM	EARKS	
	WABASH I		co-		Driller (s) Do	RL	THO	RNTO	N
Drilling Rlg.	ACKER P	NP-5, T	RUCK		Type of Penetral	tion Test	57	MNO	ARD	
Date	8-21-84	To 8-	-22-84		Field Ob	server (s)	G	,	ERN	STM ANN
Depth	C	Description		Class.	Blow Count	Recov.		Sample or Box No.		Remarks
2 3 4 5 4 7 8 9 10 11 12 13 GRAN	TENISH- TO DARI TO LOW PL ST (FILL)	SILT, AND	TY FINE		3/2/:	18"	10.0	SS - 1	4 1/2" WASI 10,0"	TRI-CON F SURE TO 84,1'

		<u> </u>				<u></u>	
	, <u>, , , , , , , , , , , , , , , , , , </u>					Borin	ng No.) - 85
Project	Name WESTLAKE					Page	2 of 6
Project	No. 84-075-4-00Z					Date	8-21-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss		Box or Sample No.	Remarks
15	GRAY CLAYEY SILT, AND FIRE SAND, LOW PLASTICITY, STIFF, MOIST (FILL)		3/4/5	12"	5,0	55-3	
79			2/4/4	10"		55-4	
23-	GRAY-BROWN SILTY FINE SAND, MOIST TO SATURATED						SATURATED MATERIAL ENCOUNTERED BETWEEN 18' AND 25',
26	GRAY FINE TO COARSE SAND, TRACE SILT, MEDIUM DENSE TO			17"		r-5	Qp=NOT OBTAINABLE
29- 29- 30-	PRIMARILY SURPOUNDED QUARTZ GRAINS		(d 0)0		111111111111	55-6	

						Boring	No.D-85
Project	Name WESTLAKE					Page	3 of 6
Project						Date	8-21-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss		Box or Sample No.	Remarks
32 -	GRAY FINE TO COARSE SAND, TRACE SILT, MEDIUM DENSE TO VERY DENSE, SATURATED			3	,s -	SZ-6	•
33.	PRIMARILY SUBROUNDED QUARTZ GRAINS						
35 -			21		513		
36	**		27	18"	*.5	5-7	
37	· · · · · · · · · · · · · · · · · · ·						,
38					1		
40	GRAY TO GRAY-BROWN COARSE SAND, SOME FINE TO MEDIUM SAND, FEW FINE GRAVELLY SFAMS, DENSE, SATURATED		10/03/21	<u>8</u> 4 18"	0.0	5-8	
42			21	4	١٠٠٠		
43 -							
44 =							
15				:			
47	y -						

						T_ :	1. N- 8 C	
	Name WESTLAKE						g No.D-85	
Project						Page	4/ of 6	
Project	No. 84-075-4-002	10-	Γ	Core	TE	Date Box or	8-21-84	
Depth	Description	Log or Class	Blow Count	Recov. & Loss	Š	ox or ample No.	Remarks	
49	GRAY TO GRAY BROWN COARSE SAND, SOME FINE TO MEDIUM SAND, FEW FINE GRAVELLY SEAMS, DENSE, SATURATED GRENISH GRAY TO GRAY FINE TO MEDIUM SAND, TRACE SILT AND COARSE SAND, UERY DENSE, FATURATED		26/34/24	137 187		5-9		
51 =	TO SUBANGULAR		24	18	7,5	3		
53-								
54		ز						
55 -		, <i>-</i>			1 1 1 1 1			
57								
58 -								
59								
61			212/2	818	۶۰.۵ <u>-</u>	55-10		
62			22		iol:5 -			
63-		-						
64								

						Borin	g No. D-85
roject Na	ME WESTLAKE					Page	5 of 6
roject No	84-075-4-002					Date	8-21-84
Depth	Description	Log Or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.	Remarks
- _ -	SREENISH GRAY TO SRAY FINE TO MEDIUM SAND, RACE SILT AND COARSE SAND, VERY DENSE TO DENSE, SATHRATE	•					
7 = 5	90% QUARTZ, SUBROUNDED TO SUB ANGREAR						
8 =							
9 =							
0 =			17	1/4	70.0		
, <u> </u>			2/2/2	18"		छ-1 1	
2					// S. - 		
3 =							
4							
5							
		:					
,							
8							
7							
					30,72		
o =			17/21/34	15* 18"		5_1-	LERY SLICHT LEACHATE LIKE
' = = = = = = = = = = = = = = = = = = =			34	I	31.5] -	5-12	UK DROPNIC PDUR

	Drilling Log	, , , , ,				,			
						Bori	ng No. D	-85	
Project	Name WESTLAKE					Page	6	of	6
Project	A: 00 - 4 - 00					Date	8-	21-	84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	B Sa	lox or ample No.		Remar	ks
83 84 85 86 87 88 89 90	GRAVEL, COBELES AND SAND, SATUPATED CREAM TO LIGHT BROWN LIMESTONE TOTAL DEPTH 84.1'						A 20 piezo piestall processor solotte Gravel with beal with sea surf. 20.0 a surf.	the state of the s	puc as to 82'. Ash - del Ash -

							_	•			
roject Name	WESTLA				· <u> </u>		Bor	ing No.	D -	87	
oject No.	84-075	5-4-00	2	:			Pag	30		of 7	
round Elevation		Location					Tot	al Footag		·	
	. 460	0.0 N	114,45	E. 90	03.64	87		•		11.7	<u> </u>
Drilling Type	Hole Size	Overburden Footage	Bedrock Footage	No. of	Samples	No. Core B	oxes		o Water	Date Mea	sure
REMARKS	5" @ THE SURFACE	111.0	0.7	2	2	0		REMI			
illing Co.	WABASH	DRILLIN	G < 0.		Driller (s) D	ORL		THOR	RNTON	,
illing Rig.	ACKER 1	MP-5, T	Ruck		Type of Penetrat	ion Test	<u> </u>	AV			
ite	8-9-84	то 8-	- 10 - 84		Field Ob	server (s)	G	LEN	ERN.	STMA	ノか
					Blow			Sample or		•	
epth		Description		Class.	Count	Recov.		Box No.		Remarks	
I DIA	MP (FILL) HT GRAY J) SOME MP (FILL)	GRAVEL (GRAVEL, ————————————————————————————————————	;						olid Au 30. 0°	GE
4					50/3"	<u>z*</u> 3*	5,0 5,3	<u>SS-1</u>			
7 - ME	TYLED LICH BROWN S DIUM PLA IST (FILL ALE GRAVI	AWDY SILT STICITY, L	-1, - 1, 1,								
9			•		2/3/		10.0	ss-z		- -	

						Borin	ng No. D - 87
Project	Name WESTLAKE					Page	
Project						Date	8 - 9 - 84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss		Box or ample No.	Remarks
15 17 17 17 17 17 17 17	MOTTLED LIGHT GRAY TO BARK GRAY TO BRUWN SANDY, SILTY CLAY, MEDIUM PLASTICITY, STIFF MOIST (FILL TRACE GRAVEL (2" MAY, DIA,)			<u>23</u> " 24"	7.6	т-з	Qp=1.5 TSF
18	DARK GRAY SILTY ELAY, MEDIUM TO HIGH PLASTICITY, WERY STIFF, MOIST			<u>21"</u> 24"	20,0	T-4	Qp=2175 +SF
24	DARK GRAY SANDY SILT AND SILTY SAND INTERBEDS, SAND IS FINE TO MEDIUM, LOW TO NON - PLASTIC, WET TO SATURATED			4" 社"	25.8	iT-5	Q = N.A. SATURATED MATERIAL FIRST ENCOUNTERED @ APPROXIMATELY 27.0' BELOW G.C.
29 - 30 <u>-</u>	BROWN TO GRAY-BROWN SILTY FINE SAND, MEDIUM DENSE SATURATED, SLIGHTLY MICACEOUS		3/1/8	18°	30.0	5-4	

	27 ming Eog	- -			-	Bori	ng No. D-	87			
Project	Name WEST LAKE					Page		of	7		
Project	No. 84-075-4-002					Date	න-	- 9 -8	34		
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss		Box or Semple No.		Remar	ks		
35	BROWN TO GRAY-BROWN SILTY FINE SAND, MEDIUM BENSE SATURATED SLIGHTLY MICACEOUS BROWN FINE TO MEDIUM SAND				3,5 111111111111111111111111111111111111	SS-&	COLL ZG.7 SAM WAS NO A OCCI THIS BECK WAS	PRIENTER IN DEPI	TER SE-G AINE WATER 180VE H- OTARY RING	ω, ω,	
36 - 36 -	TRACE SILT, MA HIGHLY QUARTZON DENSE, SATURATED		2/4/20	4" 18"	36.5	55-7	BIT	@:	TR1- 30-0'		E
38 -	LIGHT BROWN FINE TO COARSE SAND INTERBEDDED WITH THIN (3" TO 10" THICK) GRAVEL SEAMS, TRACE SILT, DENSE TO UERY DENSE, SATURATED							1,5			
41 -			25/25	8" 18"	11.3	55-8			-	3.	
45											
45 46 47			17/23/14	8"	45.0	55-9					-

						Boring	No. D - E	37	
Project	Name WESTLAKE					Page	4	of 7	
Project		·				Date	8-9	- 84	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	Ser	x or nple lo.	F	Remarks	
50 -	LIGHT BROWN FINE TO COARSE SAND INTERBEDDED WITH THIN (3" TO 10" THICK) GRAVEL SEAMS, TRACE SILT, DENSE TO VERY DEWSE, SATURATED		14/24/50	10"	50.0	-10			
52	GREENISH DARK, GRAY FINE TO MEDIUM SAU TRACE SILT, DENSE TO VERY DENSE, SATURATED	-	30		\$1.5 —				
55	·		7/17/23	7" 18"	5,0	-11			
58			3/3/4/4	18" 18"	\$0.4 	-12			
44									

	27.m.ng 20				-	Bori	ng No. D- 87
Project	Name WESTLAKE					Page	
Project	2					Date	9 9 94
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	s	Box or sample No.	Remarks
46	GREENISH DARK,GRAY FINE TO MEDIUM SAND, TRASE SILT, DENSE TO VERY DENSE SATURATED		24/25/36	13" 18"	65,U	is-13	STOPPED 8-9-84
47 - 48 -							RESUMED 8-10-84
69-							
ー 0で - マー -			30, 23, 24	14"	71.5	5-14	
73 - 27							
74 -	GRAY TO DARK GREENISH GRAY FINE TO COARSE SAND, HIGHLY QUARTEOSE, SUBROUNDED GRAINS, VERY DENSE TO MEDIUM DENSE, SATURATED FEW THIN (3" TO G") GRAVEL		2/2/3	14" 18"	\$	55- <i>15</i>	
77-	FEW THIN (3" TO G") GRAVEL SEAMS	į			76.5		
80-			27		30,0-		
8ı =			27/37/26	11"	5: 8:2 -	5-14	

051281

						Boring	No. D	- B7		
roject	Name WESTLAKE					Page	6	of	7	
Project	No. 84-075-4-002					Date	8-	9-1	94	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	Se	ox or imple No.		Rema	rks	
83 -	GRAV TO DARK GREENISH GRAY FINE TO COARSE SAND, HIGHLY QUARTZOS! SUBDOUNDED GRAINS, VERY DENSE TO MEDIUM DENSE, SATURATED	,								
85 	FEW THIN (3" to 6" THICK) GRAVEL SEAMS AT INTERVALS OF 1' TO 5',		5/10/4	9"	850	-17				
87 -	Manual Manual Books and and				31 - 1					
89	NOTE: SAND IS PREDOMINANTLY COARSE WITH TRACE FINE GRAVEL THROUGHOUT BELOW APPROXIMATELY 88'.				70-0					
9, ====================================		i	15/1/2	18"		5-18				
93	ن				11111111					
94			14_	7"	5,0					
96-		 .	14/5/18	7"	96. <u>Z</u> —	-19				
78					7711111					

						Bori	ng No. D- 87
Project	Name WESTLAKE					Page	フ of フ
Project	No. 84-075-4-002					Date	8-9-84
Depth	• Description	Log or Class	Blow Count	Core Recov. & Loss		Box or Semple No.	• Remarks
100-	GRAY TO DARK GREENISH GRAY FINE TO COARSE SAND, HIGHLY QUARTZOS SUBROUNDED GRAINS, VERY DEAST TO MEDIUM DENSE, SATURATED FEW THIN (3" TO 6" THICK) GRAVEL SEAMS AT INTERVALS OF ROUGHLY 1" TO 5".		34,50	12" S	0.0		
	NOTE = SAND IS PREDOMINANTE COARSE WITH TRACE FINE GRAUEL THROUGHOUT BELOW APPROXIMATELY 38'.		2/17/20	_	560	દક -સ	A 2" dia. PVC piezometer was installed to 111". PVC IS flush- joint, threaded couplings. Bottom 20' is .010" machine slotted screen. Bottom 24' is
108	GRAY TO TEREAM LIMESTONE, MEDIUM STRONG TO STRONG, SLIGHTLY TO MODERATELY WEATHERED		7/3/5/4	جُ إِنْ	70.6		gravel packed with a 3' Thick bentonite pellet seal above. Anulus is growted from seal 70 ground surface, tions is 3'
113	TOTAL DEPTH 111.7°			• .			WATER LEVEL /MMEDIATELY AFTER PIEZOMETER INSTALLATION 8-10-8 IS 4,4C BELOW T.O.P. WATER LEVEL @ 26,05' BELOW T.O.P. 8'15am B-14-84

Project Name	WESTL	AKF							Bor	ing No.	- 88)		
Project No.	84-075		002			<u>-</u>			Pag	θ	1 .	of _	 }	
Ground Elevation	n		Location						Tota	al Footage	·	.5		
Drilling Type	460.0		N- en Footage	6 75.046 Bedrock Footage			No. Cor		(00	Depth T			Meas	
SER	SEE	70.	,5 '	© O	 	7		<u>වර්ග</u> න	.03	58	E	Dak	111000	4.0.
	REMARKS WABASH			<u> </u>	1	Driller (s		<u> </u>	<u> </u>	REMA	ORN	T 2 /		
Drilling Rig.	ACKER					Type of		טט		7 M ACT				
Date	8-15-84			16-84			ion Test server (s	·)		SLEN			—— и <i>н</i> л	/ h/
						-1	T			Sample				
Depth		Descriptio	on		Class.	Blow Count	Rec	ov.		or Box No.		Rema	rks	
3 4 5 GI	RAUEL , SP	- , DR\	of 4	DAMP							5" 1 AUGE 30'	e RS		
8 - PL 8 - G 9 - SA	ROWN SILT ASTIC, MO RAVEL (1" IND, CLAY BRIS, DAM	MAX,	DIA	MP (FILL) 1), SOME 0 FILL		<i>4/14/1</i>	4 15/18	10.	111111111111111111111111111111111111111	35-1				
/3												•		

						Bori	ng No.S-88
Project	Name WESTLAKE					Page	
Project	No. 94-075-4-002		.	1		Date	
Depth	Description	Log or Class		Core Recov. & Loss		Box or Sample No.	Remarks
15 17 18 19 19 19	GRAY FINE SANDY SILT, LOW PLASTICITY, MEDIUM DENSE, DAMP FEW THIN, SATURATED SILTY FINE to COARSE SAND SEAMS 18' TO 24',		3/4/8	17"	5.3-	55-2	SATURATED SEA AS FIRST ENCOUNTER @ APPROX, 18".
20			5/4/10	18"		<i>\$</i> \$-3	MATERIAL IS SATURATED BELOW APPROX. 24'
25 - 26 - 27 - 28 - 28 - 28 - 28 - 28 - 28 - 28	GRAY BILTY PINE TO MEDIUM SAND PEW SANDY SILT SEAMS, SATURATED		4/3/4	0"	5/0	sr-4	Qp= N,4, NO RECOVERY ON THE SHELBY TUBE A SPLIT SPOON SAMPLE WAS OBTAINED RE,0 TO 26,5'
29-	GRAY FINE TO MEDIUM SAND, TRACE SILT, LOGSE TO VERY DENSE, SATURATED		3/3/5	18" 18"	0.0	\$ 5- 5	41/2" DIA, TRI- CONE WASH BORE 30' TO 41.5'

	Drining Lo							
						Bori	ng No.S- 88	3
Project	Name WESTLAKE		-			Page	3 0	of 3
Project	No. 84-075-4-002			_		Date	8-15-	84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	l Sa	ox or imple No.	Rer	marks
	GRAY FINE TO MEDIUM SAND QUARTZOSE, TRACE SILT, LOÓSE TO VERYDENSE, SATHRATED					·\$~\$	31011:9	8-15-14 8-16-84
34	NOTES COLOR OF SAND IS BROWN 34' TO 37'.				35.0			
36-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	FEW THIN COARSE SAND SEAMS 37' TO 41,5'		50/20/20	17/2	36.5	s- ¢		
39							A Z" dia	er was
40			w/w/m	10"	. 🚽	s-7	installed PVC is f joint, the Coupling Bottom .010" m slotted	Yush - realed 50' is 10' is 1chine screen.
42 	TOTAL DEPTH 41.5'				41.5		bentonit seal ab	acked 2' thick e pellet
45						İ	MATER L Q Z9.3' TIO,A IM ALTER PI	· 2.7° ROUND SURF, BELOW MEDIATELT EZOM ETER
44 7					TTTTTT		8-16-84.	ITION, WOO

	Project Nan	WESTLA	κE						Во	ring No	- 89		
Drilling Type Holis Size Overhouse Feedreck Footage No. of Samples No. Core Boxes Depth Toward Date Measure SEE SEE ACMARKS 47.0 / 2 8 0 SEE ACMARKS 47.0 / 2 8 0 SEE ACMARKS 47.0 / 2 8 0 SEE ACMARKS 47.0 / 2 8 0 SEE ACMARKS 47.0 / 2 8 0 SEE ACMARKS 47.0 / 2 8 0 SEE ACMARKS 47.0 / 2 8 0 SEE ACMARKS — Mining Fig. ACK REPUBLING CO. Prince(s) DOŁL THORNTON Principal Co. ACK REPUBLING CO. Prince(s) DOŁL THORNTON Principal Co. ACK REPUBLING CO. Prince(s) DOŁL THORNTON Principal Co. ACK REPUBLING CO. Principal Co. ACK REPUBLING CO. Principal Co. ACK REPUBLING CO. ACK REPUBLISH BROWN TO. ACK REPUBLISH BROWN TO. ACK REPUBLISH BROWN (IRON) STAINS CELOW APPAOX, 14' 10 NOTE: COLOR IS GREENISH BROWN APPAOX, 14' 11 CELOW APPAOX, 14' 12	Project No.	84-075	-4-0	05								of 4	
Drilling Co. LA 24 SH DRILLING CO. Drilling Co. LA 24 SH DRILLING CO. Drilling Co. LA 24 SH DRILLING CO. Drilling Co. LA 24 SH DRILLING CO. Drilling Rig. ACKER MP - 5 TZ LICK Depth Description Description Description Class. Blow Count Recor. LIGHT GRAY TO GRAY TO BROWN SAND AND CRAVEL, SOME SILT, PAPITY (FILL) DARK GRAY SILT, LOW TO MEZNIM PAPITY (FILL) CARYEY SILT, LOW TO MEZNIM PAPITY (FILL) ONOTE: COLOR IS GREENISH BROWN WITH JOME BROWN LIRON STAND NOTE: COLOR IS GREENISH BROWN WITH JOME BROWN LIRON STAND CELOW APPARX, 14' DELOW APPARX, 14' DESCRIPTION NO. COVERNOR SOLD. DORED TO BE BROWN (120N) STANDS AND STAND AND CRAVEL SOME SILT, DOWN TO MEZNIM PAPITY (FILL) PAPITY (FILL) POTE: COLOR IS GREENISH BROWN WITH JOME BROWN LIRON STANDS CELOW APPARX, 14' DELOW APPARX, 14' DESCRIPTION NO. COVERNOR SOLD. DORED TO BE BROWN (120N) STANDS CELOW APPARX, 14' DESCRIPTION NO. COVERNOR SOLD. DORED TO BE BROWN (120N) STANDS DELOW APPARX, 14' DESCRIPTION NO. COVERNOR SOLD. DORED TO BENEAURAL SOLD. DORED TO BENEAURAL SOLD. DORED TO BENEAURAL SOLD. DORED TO BENEAURAL SOLD. SEMMARS — PROPERTY OF PROPERTY (18) GLEN BROWN AVER SOLD. SAMPLE SOLD. SEMMARS — PROPERTY (18) STANDBROWN AVER SOLD. SEMMARS — PROPERTY (18) STANDBROWN AVER SOLD. DORED TO BENEAURAL SOLD. SEMMARS — PROPERTY (18) STANDBROWN AVER SOLD. SEMMARS — PROPERTY (18)	Ground Elev	vation 454.	,	Location <i>V</i>	, 1790,551	14, E	1 600	2.6094	To	tal Footag	e 4	9.0'	
REMARK ARMARKS YTO O O O O O O O O O		ype Hole Size	Overburden							Depth 1	o Water	Date Meas	ure
rilling Fig. ACKER MP = 5, TRUCK Penetration Test STANDARD Proof Penetration Test STANDARD Proof Penetration Test STANDARD Proof Penetration Test STANDARD Proof Penetration Test Standard Blow Count Recor. Box No. Remarks STANDARD Remarks Sample Count Recor. Remarks STANDARD Remarks Sample Count Recor. Remarks STANDARD Remarks SALIA AUGERS O TANDARD Remarks SALIA Remarks STANDARD Remarks			47.	8	1.2'		3	0					
Part of the property of the pr	rilling Co.	WABASH	DRIL	LING	co.		Driller (s	Do	2 4	THOR	NTON	f	
Depth Description Class. Blow Recox. Sample or SAND Recox. Sample or SAND Recox. Sand Remarks LIGHT GRAY TO GRAY TO BROWN TO SAND AND CRAVEL, SOME SILT, PAMP (FILL) SAND AND CRAVEL, SOME SILT, PAMP (FILL) CARENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYER SILT LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) MOIST (FILL) NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS GELOW APPADX, 14'	rilling Rig.	ACKER M	11-5	, JR	uck				ST	ANDA	RD		
Depth Description Class. Blow Recov. Box No. Remarks LIGHT GRAY TO GRAY TO BROWN SAND AND GRAVEL, SOME SILT, PAMP (FILL) CARENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYEY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRDN) STAINS BELOW APPROX, 14' 12	Date	8-27-84	То	8-2	.8- <i>8</i> 4		Field Ot	server (s)	GL			MANN	
LIGHT GAAY TO GRAV TO BROWN SAND AND GRAVEL, SOME SILT, PAMP (FILL) CREENISH BROWN TO DARK GRAV SILTY CLAY AND CLAYEY SILT, LOW TO MEDIUM CLAYEY SILT, LOW TO MEDIUM PASTICITY, STIFF, DAMP TO MOIST (FILL) NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12							_			or			
AND AND CRAVEL, SOME SILT, PAMP (FILL) GREENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYTY SILT LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS DELOW APPROX, 14' 12	Depth		Description	n		Class.	Count	Recov.	ļ	Box No.		Remarks	
TO DARK GRAY SILTY CLAY AND CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) PORTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	,	SAND AND GR	GRAY Avel	to e	SROWN NE SILT,						AUGE	RS O'	T
TO DARK GRAY SILTY CLAY AND CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) PORTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	2 =				ţ				-	-			
GREENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) O NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	3 =	r		· .					- -				
GREENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) O NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	4												
GREENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) O NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	_ =								=				
GREENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) O NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	5 =								- -				
TO DARK GRAY SILTY CLAY AND CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) PORTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	4								=				
CLAYRY SILT, LOW TO MEDIUM PLASTICITY, STIFF, DAMP TO MOIST (FILL) NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12					AMD				=				
NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	8 = 8	PLASTICITY,	LOW STIFF	TO M	EDIUM HP TO								
NOTE; COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14' 12	9	(H122)							=				
WITH SOME BROWN (IRON) STAINS BELOW APPROX, 14'	/o=							1 7	- م م				
	. ∄∙	WITH SOME BE	Jown (ENISH (iron)	BROW N STAINS		3/2/:	18"	- - - - -2. (1	55-1			
/3 =	12												
	/3						••		_		•		

						Borir	ng No. D- 199
Project	Name WESTLAKE					Page	2 of 4
Project	No. 84-075-4-002					Date	8-27-84
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	l s	Box or ample No.	Remarks
15 16 17	GREENISH BROWN TO DARK GRAY SILTY CLAY AND CLAYEY SILT, LOW TO MEDIUM PLASTICITY, DAMP TO MOIST, STIFF NOTE: COLOR IS GREENISH BROWN WITH SOME BROWN (IRON) STAINS			18"	20	5T-Z	Q,=1.75 TSF
18-	BELOW APPROX. 14',						FEW THIN SATURATED ZONES 15' TO 20'. MATERIAL IS SATURATED
20 _				건4" 건4"	200	ST-3	GELOW APIRDY.
22-	GRAV SILTY FINE TO MEDIUM SAND, SATURATED				S		STOPPED 8-27-84 RESUMED 8-28-84 NOTE: WATER LEVEL 15 19.3' BELOW G.S. 7:00 am 9-28-84
25-	GRAYISH SILTY CLAY, MEDIUM PLASTICITY, SATURATED			* * * * * * * * * * * * * * * * * * *	5.0	ST-4	Qp=N.A,
27-	MEDIUM SAND, MEDIUM DENSE, SATURATED	K.			7.0		Approx, 12" of material was retained in the tube but it slipped out of the tube and was lost when brought to the surface A Jar Sample was cullocted.
30			10,	184 18.	30.0	5-5	42" TRI-CONE WASH BORE , 25' TO

						Borin	ng No. D	- 89		
Project	Name WESTLAKE					Page	3	of	4	
Project	3.4					Date	0 0	7-84		
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	ox or ample No.		Remark	:5	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	GRAY SILTY FINE TO MEDIUM SAND MEDIUM DENSE, SATURATED GRAY FINE TO MEDIUM SAND, DENSE, SATURATED 90% TO 95% SUBANGHAR QUARTZ GRAINS		7/14/20	16"	%5	S-6				
39	GRAY TO BROWN FINE TO MEDIUM SAND WELL SORTED, DENSE TO VERY DENSE, SATURATED BOTO QUARTZ, 10% CHERT PRAGMENTS, QUARTZ GRAINS ARE SUBROUNDED TO ROUNDED		7/1/23	11" 18"	50.0	5-7			ن ۽	
45-	BUFF LIMESTONE		2/2/3	10" 18"	5.	5-8	gr ^{ee} .			

				Dining Log						- N. D. Q.P.
		1							 	ng No.D-89
Project			LAKE			-			Page	2 44
Project	No.	94-0	75-4-0	70Z	Los		Core	TE	Date ox or	
Depth			Description	1	Log or Class	Blow Count	Recov. & Loss	S	emple No.	Remarks
	BUFF	LIMESTO	NE					\exists		
╽. □ ヨ								\exists		
49 🗆								#		
		TOTAL	DEPTH	49.0'				\exists		
50 =								#		
								∃.	!	
57						ļ		=		A Z" dia. Puc
. =								7		prezometer was installed to 49'.
52]								\exists		puc is flush
\exists										jointed threaded couplings.
<i>5</i> 3 =								\exists		BOTTOM 15' is
コ						1		7		.010' machine slutted screen.
54]			,					\exists		Bottom 16,5 15
크								\exists		gravel packed with a 2' thock
55								\exists		bento rite pellet seal above,
\exists								\exists		
=	i							╡		Anulus is pressur grouted from smal
\exists								3		70 surface.
ヸ]			#		TiO, Pi 13 3' above ground
\exists								3		surface.
ヸ								╡		
\exists								\exists		
ᆿ						<u> </u>	}	╡		
\exists			•					\exists		
∄						}		\exists	ļ	WATER LEVEL IS
#								⇉		22,3' BELOW T.O.P.
\exists]		\exists	ļ	AFTER PIEZOMETER
#								7		1NSTALLATION, 1:30 8-28-84
\exists]			\exists		
⇉]		-			
∄								\exists		
Ⅎ								ゴ	ļ	•
\exists								\exists	Ì	
∃								7		
=								_=		

Project N			<u> </u>				<u>```.</u>	Bor	ing No.	- UX		-
roject N	0.	WESTLALE						Pag		1-90	of	
· ·	خ	14-075-4-	<u> </u>						1		1	
round E		E88614	Locatio	n Spa & 1. 1.	F - 1			Tot	al Footage	47		
Drilling	Туре	Hole Size	Overburden Footage				No. Core Bo	xes	Depth To	Water	Date Mea	sured
5.1,2 4 2.tory		4' \$ 328"	46	1		a -			9'		8/7/85	1.
rilling Co	. WAE	BASH (Subsury	face Construc	him Gupany)		Driller (s	Gary Hi	les ,	Gary For	Gman	7	٠.
		ne-750				Type of Penetral	tion Test	<i>5</i> P7				:
ate Au	6,19	85	To Aug	7,1985		Field Ob	server (s)	stath	is Payiat	oris .	_,:	
			•			Blow			Sample	•		
Depth	5/, 50	andy silt - ton	Description	•	Class.	Count	Recov.	· .	Box No.	200	Remarks	7
5 =		jour mothled plastic				3/5/5	18/18			w/4'	1 solid a 1 d to pr w) 378 +	wgt,
/o =	Br.	silty fine son	nd, loose			2/3/4	12/18		SP1-2	roborg	w/ 378 +	77/04
(111)	B = 3	sl.sily fine	sund, mdn	dense		5/7/7	12/18		SPT-3			
20 - - - - - - -		me as above slisilly dine		and deuse.		3/6/7			597-4			
				and wedense		9/16/18 1 15/15/12	1910		SP7-5	*		
		Good 21/14		3		5/3/3	12/18		591-1	4		
• =		y silly clay,				%/,	18/18		SPT-8	Lyph	12 and	' rod ~
⊀S = = = = = = = = = = = = = = = = = = =	Emes, BOB	tone, 11 6mm, ver tone, 11 6mm, ver to 46.9"	the sund, den therd, sl. week m - Luose wa	se Agred Les prossure		11/50-5	5 11.7/11.5		SPT-9 8,	17/85 Q 4	Shit .	,,,,,,
50 _ _ _ 55 _ _	T.61	pipe knyth 50 mm by @ 4	5'-5"4" 6'-3"4" Lepth	چې د دراغط					7.3	to @	for 200 for 100 stort pre	
60 <u> </u>	Pie	Throad zone for tip	6"						9.	,30 C	14 from _ word w/p/	pe 6
6 5												

Project No.			<u>^^</u>				Tr	na Na			
Project Nam	WESTLAKE						Rou	ng No. Z	D-91		
Project No.	84-075-4-	-004					Pag	Ð	1	1	
Ground Elev		Location					Tota	Footag	45		
	e Exhibit I-		u Ellisit		0	No Com P		D4- 3		Data Massa	
Drilling Ty		Overburden Footage	Bedrock Footage	NO. OF	Samples	No. Core B	oxes		To Water کی سمکر	Date Measu 2/6/5 عرب	
		44	1	<i>ــــــــ</i>	4	<u> </u>			- 11		
	WABASH			. <u> </u>	Driller (s	Gary M	iles ,	Gary	Feldmo	inn 	
	CME-750		C .00.00		Penetral		SPT	0	• 1		
Date Aug	9 5,1985	To Aug	1.7483		Field Ob	server (s)	to+h	Sample	ylatael.	<u> </u>	
Depth		Description		Class.	Blow Count	Recov.		or Box No.	F	lemarks	
	It br. f. sondy	silt slolash	c ribose da							1, d 8 uge	
5	1, pr. g. 51	- , , , ,	- , · · · ·	ן אין					Push 4	5/8°00 4	",0
*	Gr. brn silty a	land and a	los Ba				ᆿ			g & 50 -	
=	97. 214 3/114 6	γ,γ	· 1 · 1 / · · ·				\exists		313"	Tricone	- <i>Б</i> і
10			•				\exists				
_ ∃-	Gr. bry f. sar	1. 0:14	ח כל היי				\exists				
	" J. Sar	, 7 3///, 3000	~ -129				\exists	-			
## ‡ .							\exists				
20	Gr. Silty clay	1, -od. plast	ic, fr. sand								
\exists	Star III	1 1 1	<i>C 1</i>		.		\exists		سده که کد	6"under	ز ج
25	derones more si	, mod plastic	wsoft, moiss		9/1/1	18/18		SP7-1	% 25	6"under	• *
Ę	becomes more si	Ity mear 30'	·				7	- 1			
30	DK. grey v.f. sond	, loose satur	whed In eill		1/2/2	18/18		SPT-2			
\exists	DK, grey F. 3001		· • • • • • • • • • • • • • • • • • • •		-/2	/18	-=		;		
_ 35 _					3/2/	. , .		5 <i>P1-3</i>			
, <u> </u>					3/2/3	19/18	_=	21°1-5	A.		
⊿0 ∃	//	1 1	1 .		, ,		\equiv	_	S		
	Tay grey for within (2"-4") Limestone white form BOB 31. weathere	mdm sond	md dense.		3/9/11	9/18	=	591-4			
1.7	Tamestone whitelow	come mod che	our puod, hard				ヸ		14:00 F	inish dri	//, 'n a
* 2	BOB 31. weathere	2	d'						14:10 5	furt pieżo	me F
\equiv							\exists			tion. 10	
50			ı				Ⅎ	5	+40' 2	"I "To loe ! hish three	م رو مرکن
ゴ									scholule	2.50 d sc	:1. 2
55							\exists		isis F	(200 : lots	۱۱۶ معلی
\exists	•						\exists		8/6/85.	Grout to	3~
60							ᆿ		Finish	(@ 4:00	1
\exists							コ	l			
65 —	• ·						\exists				
			į				\exists				
_ 🗒							\exists				
-70				<u> </u>							

Project Name	WESTL	AKE					Bor	ing No.	D -	92
Project No.		<u> </u>					Pag	je	1	of 9
Fround Elevation	84-075- ° ** 475,37	Locatio		· 			Tot	al Footag		3,4
Orillog Type	Hole Size	<u> </u>	Sec Exhibite Bedrock Footage		- I	No. Core Bo	<u> </u>	Donth 1		Date Measure
Drilling Type	4.7. 11			No. 01		No. Core Bo	xes	SE		
REMARK 5	SUBSUAFACI			ــــــــــــــــــــــــــــــــــــــ					ARKS	
	<u></u>			J-4 3 17	Type of			HORI AND	VEON	, DEATO
	ACKER MF 4-9-85				i	don Test server (s)			NSTM	A 11 11
-ate	7-7-03	110 /	77 0 3	Τ	Tield OL	1361761 (3)		Sample		<u> </u>
Depth	ı	Description		Class.	Blow Count	Recov.		or Box No.		Remarks
2 - GRI 3 - SOI DE	AY AND BROWNE SILT, NSE, MOIST	WAY. DIA. WAY. GRAVE LOOSE TO FILL	ELLY SAND, MEDIUM		5/6/	9".	5.0	55 - 1	0' T	LID AUGE
3 = PLA	ASTICITY TH	SILT, LE			2/3/	3 7"		55-2		

						Boring	No.	D-9	 Z
Project	Name WESTLAKE					Page	2	of	
Project						Date	4-	9-8	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.		Remarks	
15 16 17 18	BROWN SANDY SILT, LOW PLASTICITY, TRACE GRAVEL, LOOSE TO MEDIUM DENSE, MOIST (FILL)		3/5/5	<u>4"</u> "	5,0	55-3			
20			3/5/4	<u>8"</u> 18"	20.00	55-4			
23			3/5/5	18.	25 S	SS-5			
₹\$ ₹\$ 30			5/4/2	1 <u>5</u> "	30.0	5-Le			

	Drilling Log						
						Borin	ng No. D-92
Project	Name WESTLAKE					Page	3 of 9
Project	No. 84-075-4-004		,		·	Date	4-9-85
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	s	Box or ample No.	Remarks
33=	BROWN SANDY SILT, LOW PLASTICITY, TRACE GRAVEL, LOPSE TO MEDIUM DENSE, MOIST DARK GRAY SILTY CLAY, MEDIUM PLASTISITY, VERY STIFF, MOIST SLIGHT LEACHATE-LIKE ODOR				31.5	SS - 4	
35 - 36 - 37 - 37 -			5/7/13	14"	365	55-7	
38 -	GRAY FINE TO MEDIUM SAND, MOIST						
39	GRAY SILTY FINE TO MEDIUM SAND, MEDIUM DENSE, SATURATED		8/11/7	11" 18"	40,0	s-8	SATURATED MATERIAL ENCOUNTERED APPROX. 39.5"
42 - 43 -					<u>ار در المرات ا</u>		RESUMED 4-10-82 RESUMED 4-10-82 BECAN WASH BORING W/ 37/8" TRI-CONE BIT AND BENTONITE MUD @ 40,0".
44	GRAY FINE TO MEDIUM SAND, TRACE SILT, DENSE, SATURATED		0)7/7	15"	15.0 S	5~9	

	Drilling Log			-					
						Borin	g No.	D-98	2
Project	Name WESTLAKE					Page	4	of	9
Project	No. 84-075-4-004		,		- 1 .	Date	4-	9-85	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.		Remai	rks
50 51 52 53	GRAY FINE TO MEDIUM SAND, TRACE SILT, DENSE, SATURATED BROWN FINE TO COARSE SAND, VERY DENSE, SATURATED		2)8/4	1)" 18"	51.5	55-10			į
55 56 57 58									
59 60 61 62 63 64 64			14 12 1 m	10"		S-11			

	Dilling Log								
						Borin	g No.	D-9	ح
Project	Name WESTLAKE					Page	5	of	
Project	No. 84-075-4.004					Date	4-	9-85	~
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	B Sa	ox or imple No.		Remar	
66 69 70 71 72 73 74 75 76 77 78 79	GRAY-SROWN COARSE SAND, VERY DENSE, SATURATED GRAY-SROWN COARSE SAND, SOME MEDIUM TO FINE SAND, MEDIUM DENSE TO UERY DENSE, SATURATED		2/3/30		70.0	5-12			
80 -			4-14	7" 18"	30.0	5-13			

						T			
						Borin	g No.	D-93	
Project N	Jame WESTLAKE					Page	6	of	9
Project N		-		-		Date	4-	9-8	5
		Log	Blow	Core Recov.	E	Box or ample No.			
Depth	Description	Log or Class	Count	& Loss		No.		Remark	<u> </u>
l ∃			ĺ						
	GRAY-BROWN COARSE SAND,					}			
83	SOME MEDIUM TO FINE SAND								
=	WIEDINH DENSE TO				=	ı			٠.
27	VERY DENSE, SATURATED					}			
						İ			
			•			1			
85 =									
867					=				
e7 =					\exists				
~]]		\exists	İ			
						}			
e9 -									
=	GRAY FINE TO MEDIUM SAND,								
87 =	TRACE SILT, VERY DERSE, SATURATED								
						ļ			
1. =									
70 =			25	- 4	0,0				
			25/28/39	9"	╡,				,
9, =	The second secon		39	18"		5-14			
= 4	GRAY SILTY FINE SAND, VERY DENSE, SATURATED			l	71.5				
l ⊣	, , , , , , , , , , , , , , , , , , ,				\exists				
92 =					\exists				
]					\exists				
95					\exists				
					╛				
94					\rightrightarrows				
	GRAY- BROWN COARSE SAND, SOME				\exists				
-	MEDIUM TO FINE SAND, DENSE		[\rightrightarrows				
95	ļ				⇉				
			.		⇉				
96					\exists				
-					\exists				
= = =	ļ				=				
97 =			}		7				
=	(.		\exists	-			
<i>98</i> ∃					7				
]	·				\exists				
					=				

	Drilling Log	, ,		-					
						Borin	g No.	D -	92
Project	Name WESTLAKE					Page	7	of	9
Project	No. 84-075- 4-004	·	,	- A	r 1 =	Date	4-	9-1	35
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	l ISa	ox or imple No.		Rema	rks
100	GRAY-BROWN COARSE SAND, SOME MEDIUM TO PINE SAND, DENSE		17/22/24		01.5	5-15			
109	BROWN-GRAY COARSE SAND, TRACE MEDITION SALD FIND FINE GRAVEL, VEXT DENSE, SATURATED		31/	8.					
111	GRAY-BROWN MEDIUM TO COARSE SAIVD WITH THIN (I" TO 3" THICK) GRAVEL INTERBEDS, SATURATE)		31/500	812	55		STUPP RESUB		4-10-35 4-11-95

	binning tog	, `						_		
						Boring	No.	D -	92	
Project	Name WESTLAKE					Page	8	of		
Project	No. 84-075-4-004					Date	4-	9-	85	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.		Remar	ks	
11 7	GRAY-BROWN MEDIUM TO COARSE SAND WITH THIN (1" TO 3" THICK) GRAVEL INTERBEDS, SATURATED									
117	GRAY MEDIUM TO COARSE SAWD, TRACE SILT, VERY DENSE, SATURATED			:						
120-			17 24 28	<u>8"</u> 18"	20 .0 -	5-17				
וכג <u>-</u>	•		28 		2115					
123-	GRAVEL SEAM 123.0' to 123,3'									
125-										
126	·				11111					
127										
129-										
130 -			12/2/N	3 18 x	30.0					
131-			31	18"	31:5	SS-18				
	·									K

139							.,	
Project No. 94-075-4-004 Description Description Description Description Description Care Box of Remarks Remarks Hole WAS REAMED W/ A 476" TRI-COME 1217 SATHRATED 134 135 137 138 139 139 140 139 141 141 141 141 141 141 141							Bori	ng No. D - 92
Depth Description Cas Blow Record Sample Remarks Remark	Project	Name WESTLAKE					Page	9 of 9
Depth Description Cost Count Record Sample Remarks Rema	Project	No. 84-075-4-004					Date	4-9-85
TRACE SILT, VERV DENSE, 136 137 137 138 139 139 139 139 140 141 141 142 143 144 TOTAL DEPTH 143.4 143 144 145 147 147 147 148 148 149 149 149 149 149 149	Depth		or		Recov.	S	ample	
149 BELOW G.S. 4-17-85 11:15 am	135 136 137 139 140 141 142 144 145 149 149 149 149 149 149 149 149 149 149	TRACE SILT, VERY BENSE, SATHRATED		7/3/5/4	7''			REAMED W/ A 47/8" TRI-CONE BIT. 41/2" O.D. Steel Casing was temporarily Installed to Ithe bentonite had from the casing Water. A 2" dia. PUC piezometer was from potoble Water. A 2" dia. PUC piezometer was Installed to 143'. Flush-joint, Throdod Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Bottom 20' is old Couplings. Gravel pack w/ quartz sand to IZO.O', Bentonite pellets IZO.O' to 117.5'. -143.6 HOLE COLLAPSED ABOVE THE BEHITONITE SEAL TO 40' BELOW G.S. GROUT O' TO 40'. WATER LEVEL IN PIEZOMETER IMMEDIATELY APPER INSTALLATION 54.6' BELOW G.S. TO,P. IS O.Z' BELOW G.S.

Drilling Log

Project Name	WESTL	AKE	•	,	· · ·		Bor	ing No.	D -	93
Project No.	84-075	7-4-004					Pag	je	1 .	of 8
iround Elevation		11)	13			Tot	al Footag	e /,	69·Z
Drilling Type	Hole Size	Overburden Footage	Bedrock Footage	No. of	Samples	No. Core E	oxes	Depth 1	o Water	Date Measured
WASH BORE	47/8"	118.0	1,2	10	4	0		REM	E. ARKS	
rilling Co. 🔟	UBSURFACE	CONSTRU	CTION (WAL	BASH	Driller (s		RY N	TILES		•
	CME 750,					tion Test		NOA		
ate	4-15-05	To 4-	-18-85		Field Ot	server (s)	GL	,		MANN
Depth		December		Class	Blow	B		Sample or Box No.		Domestia
		Description		Class.	Count	Recov.	 	BUX NO.		Remarks
=							=	1		S. AUGER
, I GR	AY TO						=	1	2" -	70 9.0'.
	ROWN SILTY	CLAY, AL	VO SAND,			Ì	=	1	SET	ASING TO 8.
	ME GRAVE DULDERS, 1							1		TRI-CON
		· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					=	1	WAS	H BORE
з 🚽						1	=	1	8.0	TO
7							- =	1		TONITE
. =							=	1	DXIL	LING MUD
4 🗄							=	Ì		
\exists							=			
5 =							50			
5 1						-41				
<u>ا</u> ج			·		2/3/3	- T"	=	55-1		
`∃						,,,	6.5			
, =							=			
' =			!				_			
. 🗄	•				:				T 0 8 0	ED 4-15-85
ន 🗏			-		•		=			med 4-16-63
=		•			•		=		-	
9 =					٠.					٠
3 .	•						=			
,o∃	•		• .•				/0.0_		•	
₫.	•	•	•		•	ou			No. A	
,,∃	-		-	. [5/3/4	19"	- =	55-Z		COVERY ABLY A
					-], =		PIECE	OF GRAV
\exists				.	٠		145		TIP Y	HE STOOM
'	•						<u> </u>		., ,	
=		7]						
′ 3 🗒 .			,							
3						•	_ =			
. –	• •	_		}			=			

						T				
	N					Borin		D- '		
Project						Page	<u> 2</u>		8	
Project	No. 84-075-4-004	Log	T	Core	T E	Date lox or	4-	15-8	5	\dashv
Depth	Description	Log or Class	Blow Count	Recov. & Loss	S	mple No.		Remar	ks	
15 -	GREENISH BROWN FINE CAND, COME MEDIUM SAND, MEDIUM DENSE, MOIST, TRACE SILT		5/0/9	2"'	5.0		•			
16 =			19	18"	5	S-3				
17										
18 =	_									
19										
Z0 _	BROWN MEDIUM SAND, SOME FINE SAND, MEDIUM DENSE, SATURATED		8/	9"					· 3	
21 =			9/10/1	3'' 18"		5-4		4,		
22 <u> </u>				:				•	No.	
23	BROWN COARSE SAID SEAM 22.0 -27.4									·
24 -	BROWN MEDIUM TO COARSE SAND, MEDIUM DENSE, SATURATED						•		;	
2 5	·		6/9/2	9" 18"		s-5				`
24			15							
27 _	SEVERAL COARSE SAND AND FINE GRAVEL SEAMS, 26.0 TO 30.0									
28 -	•								-	
29									•	
30	. •		10/14/4	4 18"	50.0	5-4				

		(·				
						Borir	ng No.	D-9	<u>حو</u>	
Project	Name WESTLAKE			_		Page	3	of	8	
Project	No. 84-675-4-004					Date	4	-15-8	35	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	. IS	Box or ample No.		Remar	ks	
32 _	BROWN MEDIUM TO COARSESAND MEDIUM DENSE, SATHRATED	5	•	3	1.5	55-4	• •			·
34 =	GRAY-BROWN FINE TO MEDIUM							•		•
36 -	GRAY CLAY SEAMS, DENSE, SATURATED	·	2/7/18	10"	5.0	S-7	÷		Ţ	
37 —			·							•
39 = = = = = = = = = = = = = = = = = = =	GRAY COARSE SAND, SOME MEDIUM SAWD, TRACE GRAVEN, MEDIUM DENSE, SATURATED	;	8,7	ָם י	70.0					·
41 = 42 =			8/13/14	18"	41.6	5-8	5.0.			
43 =		· .								
45			9/14/14	9"	45.0	·s-9	≤.0.			
47 =					46.5				3 %	

		(00.							
						Borin	ng No.	D -	93
Project	Name WESTLAKE					Page	.4	of	8
Project	0					Date	4-	-15-8	5
rioject	140. 04 015-4 004	Log		Core	В	ox or			
Depth	Description	or Class	Blow	Recov. & Loss	_ S	mple No.		Remar	ks
49 =	GRAY COARSE SAND, SOME MEDIUM SAND, TRACE GRAVEL, MEDIUM DENSE, SATURATED								
50 =	GRAY SILTY FINE SAND, SOME MEDIUM SAND, VERY DENSE, SATURATED		18	121°	20.0		· •		•
51	•		18 25	15"	57,5 <u>-</u>	5-10			
52 =		•	•	• !					
54					. =				,
55	•		-	-	71111	j		•	-
54 =		-		• .		-		-	**
57	FINE GRAVEL SOME SAND AND			·				· .	
59	COARSE GRAVEL, SATURATED			,			:		
60	GRAY SILTY FINE SAND, SOME SILTY MEDIUM SAND SEAMS,		14		.o.a				
61	DENSE TO VERY DENSE, SATURATED		4/25/201	13' 18"	61.5	5-11	S, 0 -		
42 -		•		•••		•			. •.
43 - 		- ·						•	
* / = = = = = = = = = = = = = = = = = = =	-							•	_

Boring No. D - 93 Project Name WESTLAKE Project No. 84-075-4-004 Depth Description Control Recov. Sample No. Borne Count & Loss Control Recov. Sample No. Remarks GRAV SILTY FINE SAND, SOME SILTY MEDIUM SAND SEAMS SILTY MEDIUM SAND SEAMS SATURATED REMARKS FINE ORIVEL AND SAND, SOME COARSE ORAUEL GRAY MEDIUM TO COARSE GRAVEL GRAY MEDIUM TO COARSE GRAVEL DEN SE, SATURATED REMARKS REMARKS AUGUST SAND, SOME COARSE SAND, TRACE FINE TO COARSE GRAVEL DEN SE, SATURATED REMARKS REMARKS REMARKS AUGUST SAND, SOME COARSE SAND, TRACE FINE TO COARSE GRAVEL REMARKS R	Γ						Ι			
Project No. 84-075-4-004 Depth Description Core Blow Records Sample Remarks AC GRAY SILTY FINE SAND, SOME SILTY MEDIUM SAND SEAMS DENSE TO VERY DENSE, SATURATED AT DENSE TO VERY DENSE, AT DENSE TO VERY DENSE, AT DENSE TO VERY DENSE, AT DENSE TO VERY DENSE, AT DENSE TO VERY DENSE, AC DENSE TO VERY DENSE DEN										
Dapeth Description Comparison Project						Page				
Dapeth Description Comparison Project	No. 84-075-4-004			- A	r		4 -	15-	35	
GRAY MEDIUM TO COARSE SAND, TRACE FINE TO COARSE GRAVEL, DENSE, SATURATED 78 GRAY MEDIUM TO COARSE GRAVEL, DENSE, SATURATED 78 79 70 70 71 72 73 74 75 76 77 77 78 78 78 79 80	Depth	Description	Log or Class	Blow Count	Recov. & Loss	Sa	ox or mple No.	_	Remar	ks
THE ORAUEL AND SAND, SOME COARSE GRAVEL GRAY MEDIUM TO COARSE SAND, TRACE FINE TO COARSE GRAVEL, DEN SE, SATURATED 79 80	46	GRAY SILTY FINE SAND, SOME SILTY MEDIUM SAND SEAMS DENSE TO VERY DENSE, SATURATED				\$0.6			Hemar	KS
GRAY MEDIUM TO COARSE SAND, TRACE FINE TO COARSE GRAVEL, DEN SE, SATURATED 78 80-	74 -	FINE GRAVEL AND SAND, SOME COARSE GRAVEL								·
79 =		TRACE FINE TO COARSE GRAVEL							·	·
80 = 80.0 = 80.0 = 80.0 = 85-13		•								
	80		·	4/25/24	14"	355	-13		·	

	Name WESTLAKE					Page		of 8
roject		Log	Blow	Core Recov.	E S	Date lox or ample No.		
Depth	Description	Class	Count	& Loss		No.		Remarks
33 -	FINE TO COARSE GRAVEL		-					
84 <u>-</u> -	GRAY-BROWN COARSE SAND SOME FINE GRAVEL, DENSE, SATURATED						RATE	
35 - -	COARSE GRAVEL FEAM 85,5 TO 86.0'				1			GARĂTĒR ILATION LOS! 'o
3¢ = =					, <u> </u>			. :
87 <u>-</u>								
39 <u> </u>	į.							
89 <u>-</u>								
70 <u> </u>			13/16/19	9" 18"	0.0			
7, = = =			19		7/· S	S-14	STOPPE	D 4-16-85
7 z -							RESUM	ED 4-17-85
73 - - -	GRAY-BROWN COARSE SAND AND FINE GRAVEL SOME COARSE GRAVEL, FEW THIN (1" TO 12"		ļ					
4 <u> </u>	THICK) SAIND SEAMS, VERY DENSE, SATURATED							
75 =					1			
76 = = =		jaja j			. =			
7 = =				-				
?8 <u> </u>						į		

	:			<u> </u>	·	+		-93	
roject	the state of the s				<u>e</u>	Page		of B	
roject	No. 84-075-4-004			T-0	`	Date	4-1	5-85	
Ppth	Description	Log or Class	Blow Count	Core Recov. & Loss	l S	lox or ample No.	R	emarks .	
					=				
	GRAY- BROWN COARSE SAND AND								
٦٥	FINE GRAVEL, SOME COARSE GRAVEL FEW SAND SEAMS (1" TO 12" THICK)		18,	/	30.				
\exists	VERY DENSE, SATURATED		24	19" 8"	🗐	_			
01=	יייייייייייייייייייייייייייייייייייייי	<u> </u>	18/24/48	/9"	≱	5-15			
=	ક			ſ	015_				
_ =	• <			'					
בכ	•			,					
=				1					
93≒	•		*.		= 1				

_ =				}		٠.			
)4 	·			 					
\exists	•						1 844		
5									
ັ					=				
⊢≓	COBBLE 106.0 TO 106.5			!					
°6 🗆	SORRE 18610 10 10613								
=									
) 7									
∄	COADCE CALLD TOACE STATE							;	
=	COARSE SAND, TRACE FINE GRAVEL							<i>.</i> .	
28=	• • • • • • • • • • • • • • • • • • • •					İ			
コ	,								
07	<u> </u>				=				
	FINE TO COMPSE GRAVITI SOME								
,o∃	FINE TO COARSE GRAVEL, SOME								
ブコ	COUBLE 110.0' TO 110,4'.								
\exists							_		
/ / =	•						•		
⇉							41.€		
,,_;;;;;;;;						ا د د	A		
12	GRAY COARSE SAND AND FINE	·	[**		7.		(4 %)		. 4
\exists	GRAVEL, SOME COARSE GRAVEL, DENSE, SATURATED							Tage 101	. •
13=	DENSE, SATURATED	•	·			Ì	, , ,		
\exists			•		ļ, . ¬			. <u>.</u>	
<u>~</u>				-		}			
′ ¬					.∃				
=	1					أيودح	28 -		_
15			15_	. 4 P'		<u></u>	STOPPED	4-17-6	
=			15/22/27	3"		1	RESUME	7-10-0	,,,
=			27	10 "-	. 49 5.	> -16			
479	Burns & M							Form TS-	СT
٠.	Engineers-Archite	cts-Consultant	130				. ♣ ³³	W	

		9	g, coi		 			· · ·
	·							ng No. D-93
Project						-	Page	1 1 - 2 - 2
Project	No. 84-075-4-004		Log		Core		Date	4-15-85
Depth	Description		or Class	Blow Count	Recov. & Loss	Sa	mple No.	Remarks
	GRAY COARSE SAND AND FINE GRAVEL, JOME COARSE GRAVE PENSE, SATURATED	£ 6-,			/	55	-16	
] 	FRACTURED LINESTONE							42" dia, sleel caring was
 119	LIMESTONE	<u>-</u>				\exists		remporarily installed to 112°.
رز - اودر	TOTAL DEPTH 119,2'	•		\$		i 1		Hole collapsed to.
121-								A Z" dia. PUC, flush-joint, threade coupling
	•		,			#		piezometer was installed to 112'.
 52				:				the casing was pulled back to go' and the
123-	•			٠.,			ļ	hole collapsed to 91%
124						1		Bentonite pellets 91' to 89.6'. Grout 89.6- To
125								surface.
126			,	!		, 		machine - slotted screen. T.O.P. is 3.3'
127-	•							above ground surface
128					ı			Vater level in Piecometer immediately after installation 4-10-95
129	•					* -		1130pm 15 154' below Tio.p.
130=	·				-			1317 BEIDW 110.P.
131								
- \$2E	- 4 · •							
	·						_	

Drilling Log

	WESTL	AKE					Borir	ng No.	D-	94
Project No.		15-4-004				.2	Page	-		of 7
Ground Elev		Locatio				·· <u>·</u>	Total	Footage	•	
Drilling Ty	·	Overburden Footage	Bedrock Footage	No of	Samples	No. Core Bo	Yes	Depth T	o Water	Date Measured
WASH	27/11	108,8	0,2	33		0	100	SE	ξ	-
BOAE Orilling Co.	SUBSARFACE	<u> </u>					100	MILE	ARKS	
Orilling Rig.	CME 750,		CIONS (MAI	STS H	Type of			THE		
Date	4-18-85	<u> </u>	4-24-85		Penetration Field Obs					TMNVN
			, 4, 0,					Sample		
Depth		Description		Class.	Blow Count	Recov.		or Box No.		Remarks
_ 8	MATERIAL, ING	IST AND O	#GANIC				=		4" 50	olid auger
,∃	BROWN FINE	TO MEDI	MM SAND,				\exists		-	4" COSI
	ナタシンた ベルナ ひ	FRY IDAS	r				=		set.	
2 = 1	PELOW Z'	st, salion	. () L y				\exists		Wash 376"	tri-cone
					Sk.		\exists		roller	tri-cone
3 🗒										
							\exists		SATU	rated Erial
4							\exists		CO A	PPROX.
7 =									3'	
∃ ہے						¥ þ	Ξ			
5					. / - / -	1 1	0-			
3 4 5 4					1/2/3	17"	\exists	55-(
¢ =							∄	,,,,,,		ED 4-18-89
3				·			3,5		BECHN	NED 4-19-8
7 📑						1	\exists		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
7						1	=	j		
8 =	•) 1	\exists			
\dashv			,				7			
9 🗒			,				\exists			
\exists							\exists			
10							a of			
\exists			,		3/5/7	<u>4"</u> 18"	\exists			
11 =						18"	4	55-2		
=			ļ				1.5		.:	
12=							\exists		•	•
, ,				1			\dashv	- 1		
				1		1		1		
13			ŕ							

						Boring	No.	D-9	4
Project	Name WESTLAKE			·	_	Page	5	of	
Project	6.1					Date		18-8	
rioject	NO. 01 013-7-007	Log	D'-	Core Recov.	Ī	Box or	7	10-0	·
Depth	Description	Log or Class	Count	Recov. & Loss	S	Box or ample No.		Remar	ks
1,,=									
15	BROWN FINE TO MEDIUM SAND, TRACE SILT, VERY LOOSE TO		11.	,	(5, 2				
	TRACE SILI, VERT COUSE TO		22/29	7"		- >			į
16	UERY DENSE, SATHRATED		29	18"		5-3			
				١ ١	6.5				
117									
								•	- 1
18					[∃	ĺ			
~]									
1 3					=	Ì			
19 -				ļ					
20			IB.	•	₹0. 0				
1 3			18/24/31	15"					
21-	:		31	15"		5-4			
l					21,5				
22									
			ĺ		l∃	-			i
						ł			
23									ļ
=									
24									
1 =			<u> </u>		\exists				
2.5					25. 0				
			8/1/5	15 4					
1. =			1/5	15"	≥ ا	5-5			
24									
			}		26.5				
27									
\exists									
28									
	GRAY-BROWN FINE TO COARSE								
	SAND, FEW CORRSE SAND SEARS								
29-	SAND, FEW CORRSE SAND SEARS (1" TO 2" THICK), MEDIUM DENSE,				7				
i i	SATURATED				=				
30=			12		30/0				
\exists			12/8/7	9."		5.6			
			7	טי					

	Drilling Log				·	Boring	g No.	D-94	
Project	Name WESTLAKE					Page	3	of 7	
roject	No. 84-075-4-004.					Date	4-1	18-85	
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	l is	Box or Sample No.		Remarks	
35	GRAY-BROWN FINE TO COARSE SAND FEW COARSE SAND SEAMS[]" TO Z" THICK), MEDIUM DENSE, SATURATED				30,5	55-6			
33 -	BROWN COARSE SAND, SOME MEDIUM TO FINE SAND, MEDIUM DENSE, SATHRATED		,						
35 =	·		9/	را و	25.0				
36			9/13/12	18"	=======================================	55-7			
37					36.5				
38									
59									
'0 = = = =	·		6/8/9	6 "	0,0				
, = = = = = = = = = = = = = = = = = = =			79	18"	<i>41.5</i>				
'2 = = = = =									
3 -						ļ			
∄	GRAY MEDIUM TO COAQUE SAND, MEDIUM DENSE, SATURATED				(5, 0				
6	•		10/12/14	9" 18"		55-9		• .	
77					4, <u>5</u> =			•	
\exists									

						Boring	No.	D-9	4
Project	Name WESTLAKE					Page	4	of	フ
Project	No. 84-075-4-004					Date	4.	-18-8	35
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	lox or ample No.		Remar	ks
49	GRAY MEDIUM TO COARSE SAND, MEDIUM DENSE, SATURATED			 	1111				
50 =	GRAY COARSE CAND, SOME MEDIUM SAND, MEDIUM DENSE TO DENSE, SATURATED		7/10/10	10"	0.0				
51			10	19.	57.5 -	S-10			
53 -	GRAVEL SEAM 53.0 TO 53.2'								
5% -									
55 -									
57	GRAVEL SEAM 57.0' TO 57.8'								
58 -									
60 <u> </u>				<u>ا</u>	0,8				-
، د،			215/9	4.	\exists	5-11			
62 <u>-</u>				•	15-				
63	•	-		·					
64	·								

	Drining Log					1	
					·	1	ng No. P - 94
Project						Page	
Project	No. 84-075-4-004		<u>,</u>	Coro	<u>. Тъ</u>	Date	
Depth	Description	or Class	Blow Count	Recov. & Loss	Sa	mple No.	Remarks
Depth 66 67 68 69 70 71 72	•		Blow Count	2" 18"	700	ox or ample No.	
74 75 76 77 78 79 30 81			2/20/22	6"	50.5	·- 13	

		, (30				Borin	g No. D-94
Project	Name WESTLAKE	<u></u>		<u> </u>		Page	& of 7
Project	<u> </u>					Date	4-18-85
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	B Sa	ox or mple No.	Remarks
83- 83-	GRAY COARSE SAND, SOME MEDIUM SAND, MEDIUM DENSE TO DENSE, SATURATED	·	,				
85	GRAVEL SEAM 86,0 TO 86.4'						
87-	GRAY FINE TO COARSE SAND, VERY DENSE, SATURATED						
89-							
91 =	SILTY SAND SEAM 90.4 to 90.8		32/36	7"		5-14	
93							
94 -							
96							·
98							· .

		g, coi				
					 Bori	ng No. D - 95
Project Name	WESTLAKE				 Page	フ of フ
Project No.	84-075-4-004				 Date	4-18-85
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	Box or ample No.	Remarks
			17/20/27	<u>ジ</u> 18**	is - 1s	A Z" PUC, flush- joint, threeded Couple piezomater was installed to 106, 20' of ,010 machine slotted screen, Hole collapsed to a depth of 55'. Bentonte pellets C5' TO 64. Grout 64' to Surface. Water level inmediately fler enctallation 4-23-05, 3:00pm 2.6 below Tid.P. T.O.P is 4.0' obove 6.

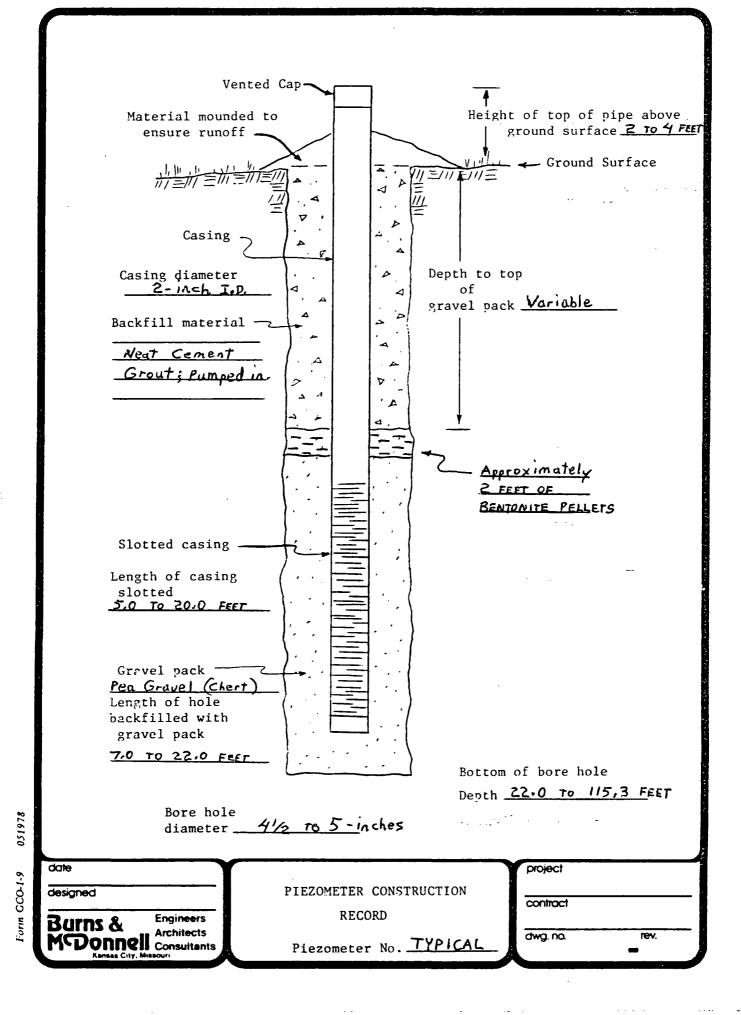
Drilling Log

Project Na		ESTLAK	Ē			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Во	ring No.	D - 9	 ?5 ⁻
Project No	». <i>E</i>	34-075	- 4-0	704					Pa	ge		of .
Ground El	levation	453.09	,	Location					Tot	tal Footag	9	
Drilling	Type	Hole Size	Overburder	n Footage	Bedrock Footage	No. of	Samples	No. Core E	oxes .	Depth T	o Water	Date Measured
REMA											·	
Orilling Co	. Sui	BSURFACE	E 601	STA	ACTORS (WI	HZASH	Driller (s		RY	JOH	421	NG
Orilling Rig). C	ME 55,	TRUC	K	- 		Type of Penetra	tion Test		TAND	ARD	
Date	4-	- ZZ-85	То			<u> </u>	Field Ot	server (s)	G		STMA	INN
Depth		,	Descriptio	n		Class.	Blow Count	Recov.		Sample or Box No.		Remarks
	GRAV		500011P110	····		Ciass.		THOODS.	_	502110.		
\exists									=]	AUGA	IOLLOW ERS O' TO
′∃	DARL	EROWN	544	DA	NB GRAVEL				=	┪ ┆	201.	
コ	Mois	T (FILL)		•				=	1 1		
2 7									=	╡ .		
コ									=	†		
2 3 4 5 4 7] =			
1									=]		
\exists									=]		
4]] =]		
\exists										1	ı	
5 =					:				5.0	<u> </u>		
ヸ							211.1	9 0"	=			
, 井					ı		2/4/	9 8"	=	1-22		
<u>۲</u>									=]		
_ ∃								-	6.5_	}	•	
フ コ									=]		
\exists									=			
8					<u> </u>				=		•	
⁷ =	5 E O		A . ^						=	1		
9 🗄	AWN	GRAVEL	ひとみて	. K 5 RY 1	DOSE				' =]		
\exists	30915	ナ	- , • - '	` '	~~~se,					}		
,_ Ⅎ		. •				1						.*
° =					ت	1			0.0			
⇉					<i>م</i>		2/3/	2 97	=			
, I					Ì	l	7	184	=	52-5		
\exists									11.5			
,, =	_											
IZ =	B D 0 14	IN EINE		DY:	SILT, LOW				=			
, Ξ	D/ A	TICITY	UFD.	~ · · · · · · · · · · · · · · · · · · ·	10 SF	ľ	•		=]		
13 🗒	MOIST	TICITY T - SAT	URAT	F D	BELOW	4			=			
\exists	APPA	0x. 15'	• •									•
\exists	•					ł			_	}		

						Borin	ng No. D - 95
Project						Page	2 of
Project	No. 84-075-4-004					Date	4-22-85
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or ample No.	Remarks
15	BROWN FINE SANDY SILT, LOW PLASTICITY, VERY LOOSE, MOIST - SATURATED BELOW APPROX. 15°		2/2/3	<u>C"</u> 18"	15.011171181111	5-3	VATER LEVEL @ 13.6' BELOW G.S. 7:150M 4-23-85 (HOLE SAT OVERNIGHT AFTER GEING DRILLED 201)
20	BROWN FINE TO MEDIUM SAND, LOOSE TO MEDIUM DENSE, SATURATED		1/3/3		213	:5-4	STOPPED 4-22-83 RESUMED 4-23-85 SET 41/2" CASING AND BEGAN WASH
24 - 25 - 24 - 27 - 27 - 27 - 27 - 27 - 27 - 27	BROWN SILTY FINE TO MEDIUM SAND, DENSE, SATURATED		173/5	13"	24,0	5-5	BORING W/ 37/8" DIA. TRI-CONE BIT,
28 = 29 = 30 = = = = = = = = = = = = = = = = =	• 	•	5/2/20	2/8"	9,0	is-¢	

	Dining Log			/					
						Borin	g No.	D-95	-
Project	Name WESTLAKE					Page	3	of	
Project	No		,	Cono	110	Date	4-2	<u> 3 - 85</u>	·
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	Sa	ox or imple No.		Remarks	
32	BROWN SILTY FIRE TO MEDIUM SAND, DENSE, SATURATED								
34 -			1/6/23	14" 18"	34,0	5-7			
34 -					35.5				
38 -	GRAY FINE TO MEDIUM SAND, MEDIUM DENSE TO VERY DEWSE, SATURATED								
39 - - - - - - - - - - - - - - - - - - -			4/9/14	B" 18*	39,0	5-8			
41 = 52 =									
43 <u> </u>					44.0				
45 -			9/6/5	ية ام م	_	-9		·	• · · · ·
45 = = = = = = = = = = = = = = = = = = =	FEW 141W COARSE SAND SFAMS 47' TO 49',						•		

						Boring	No.	D-9	5
Project						Page	4	of	
Project	No. 84-075-4004					Date			
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	S	Box or sample No.		Remark	.
49 <u> </u>	GRAY FINE TO MEDIUM SAND MEDIUM DENSE TO VERY DENSE, SATURATED		12 28 43	}	50.5	55-10			
52 -									
54 -	GRAY FINE TO COARSE SAND, TRACE FINE GRAVEL, DENSE					;			
57 -									,
58 =			11/13/24	6" 18"	59.0				
60 -			24	184	6875_				
62 <u> </u>									
65						-	•		


		*	··· <u>·</u>			Boring	No.	D-95
Project						Page	5	of
Project	No. 84-075-4-004					Date		
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss	Sa	ox or ample No.		Remarks
66 = 67 = 68 = 68	GRAY FINE TO MEDIUM SAND, VERY DENSE, SATURATED							
70 =			24/50%	10"	59.0 - 59.0 - 70.0 	5-12		
78	CRAUKL SEAM 72.0'-72.2'							·
76	GRAY COARSE SAND, SOME MEDIUM AND FINE SAND, VERY DENSE							
79 -	VERY DENSE		2/2/2		79.0 	S-13		
81	:							

						Bori	ng No.	D-95	,
Project						Page		of	
Project	No. 84-075-4-004					Date	e		
Depth	Description	Log or Class	Blow Count	Core Recov. & Loss		Box or Sample No.		Remarks	
83 =	GRAY COARSE SAND, SOME MEDIUM AND FINE SAND, VERY DENSE, SATURATED GRAVEL SEAM 83.5 TO 83.8					·			
85 -									
87_									
89 -									
90-			15/23/29	7"	I →	SS-14		PEO 4-2	3-8 5
9, =					70. <u>5</u>		-	mED 4-2	
92 <u> </u>									
94 =	i								•
95 =	TRACE OF COARSE GRAVEL								
96-									•
78									
					·				

	Dining Log						
						Bori	ng No. D - 95
Project						Page	7 of
Project	No. 84-075-4-004		· ·			Date	
Depth		Log or Class		Core Recov. & Loss	Sa	ox or imple No.	Remarks
100	GRAY COARCE SAND, SOME MEDIUM AND FINE SAND VERY DENSE, SATURATED		17/23/43	7"	79.0 3 20.5	5-15	
101 = 102 = 103 = 104 = 105 = 106 = 1	TOTAL DEPTH 101.0						A 2" dia, flush- joint, throaded couple PVC prezometer was installed to 101.0". Bottom 20" is .010 machine elotted screen. Hole collapsed to 62" after PVC installed. Grout 62" to surface. t.o.p. is 3.3" above ground surface
107							Water level in prezometer immediately efter installation 4+24-29 3:00pm is 16.7 below T.O.P.
113 -		·					

APPENDIX B

PIEZOMETER CONSTRUCTION

APPENDIX C
OBSERVED WATER LEVEL READINGS

Sheet	οf	
Silect	 vı	

Project Name WESTLAKES	Project No. 84-075-4-002	Hole No. I - 50 (old N-1)
Location	Elev. Ground Surface (G.S.) 449.0	
N E	Elev. Top at Pipe (T.O.P.) or Reference Point	^(R.P.) 453,48
Date Started Drilling Hole	Total Depth of Hole 40.4	Drilling Type
Date Completed Drilling Hole	ime	
<u> </u>	Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed	ime 40.6	10-0

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	11:15 an,	P. Hustad	15.8' from T.O.P.	437.68	
6-77-84	10:40 am	R. Robinson	16.97 from 7,012	437.01	
3-8-34	3=48pm	G. Ernstmann	18.62 from T.J.P.	434.86	
8-20-84	5:05pm	G. Ernsimonn	19.5 from 7.0.P.	433.98	Electric tope (water level indicator
8-29-84	7: 15am	G. Ernstmann	20.33 from T.O.P.	433.15	Ny .
10 - 3 - 84	9:04 am	RiRobinson	20,4 from T.O.P.	433.08	Electric Tape
10-26-84	12:55 pm	G. Ernstmann	18.80 from T.O.P.	434.68	Electric Tape
12-14-84	12:58 pm	Gatrnelmorn	18.50 from T.O.P.	434.98	Electric Tape
3-30-85	2:25 pm	G. Ernstmonn	15.50 from T.O.P.	437.98	steel tape
4-25-85	12:35pm	G. Ernstmann	17.13 from T.O.P.	436.35	***
6.7.85	mr. Can	S. Payratoris	19.96 from T.S.P.	11.6.50	
3-9-85		S. Payatotis	19,14 from T.O.P.	434,39	chita tape
			from		
		·:	from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	 of	

Project Name WESTLARES		Project No. 84-	075 - 7- 000	Hole No.S-51 (old HI	(old HL-3)	
Location			Elev. Ground Surface (G.S.) 446.3			
N			Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	447.72		
Date Started Drilling Hole	Time		Total Depth of Hole	Drilling Type		
Date Completed Drilling Hole	Time					
			Total Depth of Piezometer	Footage Slotted		
Date Piezometer Installed	Time		25.8	3.	.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	11:38 am	Pr Hustad	12.3 from 7.0.P.	435,42	
5-24-84	12:45 pm	G. Ernstmann	13.0 from 7.0.P.	434,72	
6-27-84	10:47 am	R. Robinson	13.36 from T.O.P.	434,36	
8-8-89	3:35 pm	6. Ernstmann	14,97 from T.O.P.	432,75	
8-20-84	5:10 pm	G. Ernstmann	15.75 from T.O.P.	421.97	Electric Tupe (water level andical)
8-29-84	10:45 am	G. Ernstmann	16.39 from 7.0.P.	431.33	
10 - 3 - 84	14 to 05:19	R. Kolinson	16,40 from T.O.P.	431.32	Electric Tage
10-26-84	12:45pm	G. Ernstmann	15.35 from T.O.P.	432.37	Electric Tape
12 - 19 - 84	12:45 pm	6. Ernstmann	15,2 from T.D.P.	432.5	Electric Tape
3 - 30 - 85	2:20 pm	G. Ernstmann	12,38 from 7.0.P.	435.14	steel tope
4-18-85	12:17 pm	G. Ernslmann.	13.00 - from - T.O.P.	434.73	
6-7-85	11:15 am	S. Paylatakis	13.88 from T.U.P.	493,54	
8-8-62	_	S. Payralans	15,74 from T,000.	431,48	ciolk Tape
12-13-86		mitrio	12,33 from 5,6.1%	435.29	Electric Tape
5-14-86	_	A. Erio	15.12 from T.U.P.	421.60	
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SER	VICES
GEOTECHNICAL	DEPARTMENT

Sheet	of	
-------	----	--

Project Name WESTLAKES			No. 84-075-4-002	Hole No. S-52 (old HL-Z)
Location			Elev. Ground Surface (G.S.)	444.7
N	E		Elev. Top at Pipe (T.O.P.) or	Reference Point (R.P.) 447.08
Date Started Drilling Hole Time		Total Depth of Hole	Drilling Type	
Date Completed Drilling Hole		Time		
Date Piezometer Installed		Time	Total Depth of Piezometer	Pootage Slotted 3.0

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	11:28 am	P. Hustad	70.9 from T.O.P.	436,18	
5-23-84	1:00 am	G. Ernstmann	11.3 from 7.0.P.	435.78	
6-27-84	10:51 am	R. Robinson	11,39 from 7.0.P.	433.31	
८- ७ - ८४	3:40 pm	G. Ernstmann	12,98 from T.O.P.	434,10	
8 -20-84	5=15 pm	G. Ernsimenn	13.75 from T.O.A.	433,33	Electric Tape
8-29-84	10:50 am	G. Ernstmann	14.38 from 7.0.P.	432.70	
10-3-84	9:25 AM	R. Robinson	141,54 from T.O.P.	432,54	Electric Tape
10-26-84	12:40 pm	G, Ernstmann	13,50 from 1.0.P.	433.58	1. 1.
12 - 19 - 84	12:41 pm	G. Ernstmann	13,3 from T.O.P.	434.8	1, 1,
3 - 30 - 85	2:15 pm	G. Ernstmann	10.92 from T.O.P.	436.16	Steel tape
4-18-8:	_	G. Ernstmann	11,4 from T.O.P.	435,68	•
4. 25 - 85	12:25pm	G. Ernstmann	12.0 from T,0P.	435,08	
6-7-85	11:25 am	S. Payialakis	11.90 from T.D.P.	435,18	
8-8-85	_	S. Payialakis	13,96 from T.O.P.	433.32	cloth Tape
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet _____ of ____

Project Name WESTL	AKES	Project No. 8 -	4-075-4-002	Hole No. S-53 (old HL-1)	
Location			Elev. Ground Surface (G.S.) 444.8	•	
N	E .		Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	449,00	
Date Started Drilling Hole Time			Total Depth of Hole 23.7	Drilling Type	
Date Completed Drilling Hole	Time				
			Total Depth of Piezometer	Footage Slotted	
Date Piezometer Installed	Time		23,7	3.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	//:32 am	P. Hustad	11.65 from 7.0.P.	437,35	
5-23-84	1:05 pm	G. Ernstmann	11.85 from T. O.P.	437.15	
6-27-84	10:55 am	R. Robinson	11.94 from 7.0.P.	437.06	
8-8-84	3:42 pm	G. Ernstwann	13.62 from T.O.P.	435,38	
8-20-84	5:20 pm	G, Ernstmann	14.3 from T.O.P.	434.7	Electric Tape
8-29-84	10:55 am	G. Ernstmann	14.96 from T.O.P.	434.04	
10 - 3 - 84	9:27am	R. Hobinson	15.09 from T10,P.	433.91	Electric Tape
10-26-84	12:35pm	G. Ernstmann	14,10 from TIO,P.	434.90	· · · · · · · · · · · · · · · · · · ·
12-12-84	12:37 pm	G. Ernstmann	14.0 from T.O.P.	435,0	., .,
3 - 30- 80	2:10 pm	G. Ernstmann	11.67 from T.O.P.	437, 33	Steel tape
4-18-25	NOON	Gi Ernstmann	12.1 from T.O.P.	436,90	
4-25-85	12:21	G. Ernstmann	12,63 from 7.0.P.	436.37	
6-7-85	11:35am	5. Payiatakis	12.83 from T.J.P.	436.17	
8-8-85	_	S. Paylalakis	14.48 from 7,0.P.	434,52	Cloth Tage
			from		•
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	
Jueer		

Project Name	ct Name WESTLAKE Project No.		84-075-4-002	Hole No. S-54 (old 36)	
Location			Elev, Ground Surface (G.S.) 470.0		
2	E		Elev. Top at Pipe (T.O.P.) or Reference Point (R.	P.) 471.0	
Date Started Drilling	Hole Tim	ne	Total Depth of Hole	Drilling Type	
Date Completed Drill	ling Hole Tim	ne			
			Total Depth of Piezometer	Footage Slotted	
Date Piezometer Insta	alled Tim	<u> </u>	40.4	3.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	1:44 pm	P. Hustad	34,2 from T.O.P.	436.8	
5-23-84	1:10pm	G. Ernstmann	34.2 from T.O.P.	436.8	
6-27-34	11:15 a.m	K. Kooinson	35,45 from T.O.P.	435,55	
8-8-84	4:15 pm	G, Ernstmann	35,75 from TiOiP.	435,25	
8-20-84	4:28pm	G. Ernstmann	36.4 from T.O.P.	434.6	Electric tope (water level indicate
8-24-84	1:15 pm	G. Ernstmann	36.91 from T,0,P.	434.09	
3-29-64	10:15 am	G. Ernstmann	37,24 from T,0,P,	433.76	
10-3-84	11:05 am	R. Robinson	37,19 from T,O.P.	433,81	Electric Tape
10-26-84	10:10am	G. Ernstmann	36,20 from T.O.P.	434,80	., .,
12-19-84	11:48 am	G. Ernstmann	36,3 from T.O.P.	434.7	., .,
3-20-85	1= 25 pm	G. Ernstmann	34.08 from T. U.P.	-736.92	steel tape
4-25-85	9:02 am	G. Ernsimann	34.75 from T.O.P.	436.25	·
6-7-85	1:55 pm	S. Payiatokis	34.84 from 7.8.P.	436.16	
8-8-85	_	S. Payiatakis	36.63 from T.U.P.	434,17	Cloth Tape
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Chass		
Sheet	of	

Project Name WESTLAKE	Project No. 84-075-4-002	Hole No. I-55 (old 35)	
Location	Elev. Ground Surface (G.S.) 471.9		
N E	Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.	9 475,1	
Date Started Drilling Hole Time	Total Depth of Hole	Drilling Type	
Date Completed Drilling Hole Time			
D. Disable Held	Total Depth of Piezometer	Footage Slotted	
Date Piezometer Installed Time		3.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	1:40pm	P. Hustad	38.0 from T.O.P.	437.1	
5-23-84	4:15 pm	G. Ernstmann	37.9 from 7.0.P.	437.2	
6-27-84	11:20am	R. Robinson	38.02 from T.O.P.	437.08	
8-8-84	3:00 pm	G. Ernstmann	39.55 from T.O.P.	435.55	
8-20-84	4;25 pm	G. Ernstinann	40,4 from T.O.P.	434,7	Electric Tape
8-29-84	10:20am	G. Ernstmann	41.13 from T.O.P.	433.97	
10-3-84	11:10 am	RiRobinson	41.15 from T.O.P.	433,95	Electric Tape
10-26-84	10:02 am	G. Ernstmann	40.20 from T.O.P.	434,90	
12-19-84	11:45 am	G.Eins7mann	40,2 from T.O.P.	434.9	
3 - 30 - 85	1:30pm	G. Ernstmann	37.83 from T.O.P.	437.27	steel tape
4-25-85	e:55 am	G. Ernstinann	38.63 from T.O.P.	736.47	
6-7-85	1:50 pm	S. Payiatakis	38.52 from T.O.P.	436,58	
8-8-85	_	s. Paylotakis	44,73 from T.O.P.	430.37	Cloth Tape
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	
-------	----	--

Project Name WESTLAKE			Project No. 84-	075-4-002	Hole No. I-56 (old 34)
Location				Elev. Ground Surface (G.S.) 475. 1	
N	E			Elev. Top at Pipe (T.O.P.) or Reference Point (R.	P.) 478.4
Date Started Drilling Hole		Time		Total Depth of Hole	Drilling Type
Date Completed Drilling Hole		Time		9///	
Date Piezometer Installed		Time		Total Depth of Piezometer	Footage Slotted
Date i lesometer installed			 -	41.1	3.0

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	1:36 pm	P. Hustad	41.45 from 7,0.P.	436,95	
4-25-04	8:10 am	G. Ernstmann	41.5 from 7.0.P.	436.9	
4-27-84	11:25 am	R. Rubinson	41,67 from 7,0.P.	434,73	
8-8-84	2:55 pm	G, Ernstmann	43.34 from T.O.P.	435,06	
8-20-84	3155 pm	GIErnstmann	44.0 from T.O.P.	434,4	Electric Tape
8-29-04	10:22 am	G. Ernstmann	44,86 from T.O.P.	433.54	
10-3-84	11:15 am	R. Robinson	44,97 from T, U.P.	433,43	Electric Tape
10-26-84	9:57 am	GiErnstmann	43,95 from 7,0,P,	434.45	<i>i</i> , <i>i</i> ,
12-19-84	11:42 am	G. Ernstmann	44.0 from 7.0.P.	434.4	1
3-30.85	1:25 pm	G. Ernstmonn	41.42 from T.O.P.	436.98	Steel tape
4-25-85	8:48 am	G. Ernstmann	42.17 from T.O.P.	436.23	
6-7-85	1:45 pm	S. Payiotakis	42.18 from T.O.P.	436.22	
8-8-85	_	S. Payintais	44.43 from T.O.P.	433,97	
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	
OI I CC L		

Project Name	WESTLAKE		Project No. 84	- 075 - 4-002	Hole No. I-58 (old 40)	
Location			Elev. Ground Surface (G.S.)		5	
N	E			Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	480.5	
Date Started Drilling) Hole	Time		Total Depth of Hole	Drilling Type	
Date Completed Dri	Iling Hole	Time				
				Total Depth of Piezometer	Footage Slotted	
Date Piezometer Ins	talled	Time		60.0	3.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-24-84	1:30pm	P. Hustad	43.5 from T.O.P.	437.0	
5-24-84	8:00 am	G. Ernstmann	43.3 from 7.0.P.	437.2	
6-27-84	11:35 am	R. Robinson	43.55 from T.O.P.	436.95	
8- 8-84	2:45 pm	GIErnstmann	45.29 from T.O.P.	4/35/21	
8-20-84	4:10pm	G. Ernstinann	46,15 from T.O.P.	434,35	Electric Tape
8-29-84	10:30am	G. Erns7mann	44.81 from T.O.P.	432.69	
10-3-84	11:21 am	R. Robinson	47,02 from TIOIP,	433,48	Electric Tape
10-26-84	9:50 am	GiErnstinann	46,00 from TIO.P.	434.50	1.
12 - 19-84	11:35 am.	G. Ernstmann	46,0 from T.O.P.	434.5	,, ,,
3-30-85	1:15 pm	Gi ErnsTmann	43.58 from 7.0.P.	436.92	steel tape
4-25-85	8:40 am	6. Ernstmann	44.04 from T.O.P.	436.46	
6-7-85	1:40 pm	S. Payiatakis	44.13 from T.O.P.	436,37	
8-8-85		s-Payialakis	46.41 from T.O.P.	434.09	Clora Tape
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet.	of	
--------	----	--

Project Name WEST	LAKE	Project No.	34-075-4-002	Hole No. I-59 (old N-2)
Location			Elev, Ground Surface (G,S,)	444.9
N	E		Elev. Top at Pipe (T.O.P.) or Reference	ce Point (R.P.) 448-67
Date Started Drilling Hole	Time		Total Depth of Hole 43.5	Drilling Type
Date Completed Drilling Hole Time				
Date Biogrameter Installed	Time		Total Depth of Piezometer 43.5	Footage Slotted
Date Piezometer Installed Time		 -		10.0

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	1:22 pm	P. Hustad	12.55 from 7.0.P.	436.12	·
5-24-84	8:20 am	GI Ernstmann	12.7 from T.O.A.	435.97	
6-27-84	11:55 am	R. Hobinson	12,92 from T.O.P.	435,75	
8-8-84	2:35 pm	Gi Ernstmann	14,68 from T,0,P,	433,99	
8-20-84	10:48 am	G. Ernstmann	15.56 from T.O.P.	433.11	·
8-24-84	2:15pm	G. Erns7mann	15.84 from T.O.P.	28.524	
8-29-84	12:15pm	G. Ernstmann	16.16 from T.O.P.	432.51	
10-3-84	11:27 am	R. Robinson	16.36 from T.O.P.	432,31	Electric Tape
10-76-84	9:47am	G. Ernstmann	15.45 from T.O.P.	433,22	1,
12-19-84	11:18 am	G. Erastmann	15,4 from T, D, P.	433,2	1, 6,
3-30-85	12:47 pm	GIErnstmony	13.00 from 7,0.P.	435.67	steel tape
4-25-85	10:41 am	G. Ernstmann	13,42 from T.O.P.	435,25	
6-7-85	1:15 pm	S. Paylatatis	13.50 from 7.0.13.	435.17	
8-8-85		s-Payiatakis	15,47 from T.O.P.	433,20	cloth Tape
12-13-85		M. Erio	14,43 from T.O.P.	434,24	Electric Tape
5-20-86	-	MIErio	15,92 from 7,0.P.	432.75	

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	-1	
Stieet	01	

Project Name WEST	AKL	Project No. 84-	075-4-002	Hole No. 5-60 (old 5-2)
Location			Elev. Ground Surface (G.S.) 443.1	
N	Ε		Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.	446.93(1) 446.33
Date Started Drilling Hole	Time		Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	Time			
Date Piezometer Installed	Time		Total Depth of Piezometer 21, 0	Footage Slotted

Date	Time	By Whom	Depth to W	later*	W.L. Elev.	Remarks
4-26-84	afternoon	P. Hustad	10.65 from	T.O.P. (1)	434,28	
5-24-84	8:40 am	G. Ernstmann	10,7 from	T.O.P. (1)	434.23	
6-27-84	10:91 am	R. Robinson	12.02 from	T.O.P. (1)	434.91	
8-8-84	5:55 bw	G. Ernstmann	12.84 from	T.O.P.(1)	434,09	
8-20-84	10:42 am	G. Ernstmann	13,74 from	T.O.P.(1)	433.19	
8-29-84	12:02 pm	G. Ernstmann	/4,4 from	T, 0, P. (1)	432:53	
10-3-84	11-36 am	R. Robinson	14,70 from	T.O.P.(1)	432.23	Electric Tape
10-26-84	9:40 am	G. Ernstmann	13.95 from	T.O.P.(1)	432.98	11 11
12-19-84	11:12 am	G. Ernstmann	* 13.7(1.1)rom	T.O.P. (1)	433.2	Electric Tape . Note: above-ground
3 - 30-85	12:37 pm	G. Ernstmann	* 1.17 from	G,S,	441193	steel tape * Note: piez. is still damaged.
4-17-85	11:00 am	G. Ernstmann	10.4 from	T.O.P. (2)	435,90	
4-25-85	10:31 an	G. Einstmann	10.92 from	T.O.P. (2)		
6-4-85	2:30pm	S. Payiotakis	12.06 from	T.O.P.(2)	434.24	CIOTA Tape
6-7-85	1:30pm	S. Payratakis	11.03 from	T,U,P,(2)	1/35,27	Cloth Tape
8-6-62	_	S. Payralakis	12.98 from	T.O.P.(2)	43,3,37	Cloth Tape
		7	from		*****	

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL	SER	VICES
GEOTECHNI	CAL	DEPARTMENT

Sheet	_of
-------	-----

Project Name WI	ESTLAKE	Project No.	84-075-4-002	Hole No. S-61 (old S-1)
Location			Elev, Ground Surface (G.S.) 445.	4
N	E		Elev. Top at Pipe (T.O.P.) or Reference Point (R	P.) 950-17
Date Started Drilling Hole		Time	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole Time			· 	
			Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed		Time	21.5	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	afternoon	P. Hustad	13.3 from T.O.P.	436.87	
5-24-84	8:30am	G. Ernstmann	13.8 from J.O.P.	436,37	
6-27-84	12:07 pm	K. Nobinson	14.05 from T.O.A.	436.12	
0-8-84	Z:20pm	G. Ernstmann	16.00 from T.O.P.	434.17	
8-20-84	10:38 am	G. Ernstmann	16.90 from T.O.P.	435.27	
8-29-84	12:00 noon	G. Ernstmann	17.56 from T.O.P.	432.61	
10-3-84	11:40 am	R. Robinson	17,88 from T.O.P.	432.29	Electric Tape
10-26-84	9:20am	G. Ernstmann	17.00 from T.O.P.	433,17	11 10
12-19-84	11:08 am	G. Ernstmann	16.8 from T.O.P.	433.4	n ti
3-30-95	12:35 pm	o, Ernstmann	14, 42 from T.O.P.	435.75	steel Tape
4-17-85	2:4574	GIEINSTONANO	14.1 from T.O.P.	436.07	Flectic Tape
4-25-85	10:28 am	Coffee stanan n	14.42 from T.O.P.	435,75	D E
6-4-85	2:10 pm	S. Paylatasis	15.79 from T.O.P.	27.28	
4-7-85	8:47am	J. Payralakis	14,89 from T.O.P.	435,28	
8-8-85	_	S. Payrallakis	16.72 from T. U.P.	433,45	cioth Tape
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SER	VICES
GEOTECHNICAL	DEPARTMENT

Chaat	of	
SHEEL	01	

Project Name WESTLA	KES	Project No. 84	-075-41-002	Hole No. I- 62 (6/d N-3)
Location			Elev. Ground Surface (G.S.)	,
N	E		Elev. Top at Pipe (T,O.P.) or Reference Point (R.P.	944.08
Date Started Drilling Hole		ime	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole		ime	Total Depth of Piezometer	
Date Piezometer Installed		ime	Total Depth of Flezometer 44.0	Footage Slotted /0.0

Remarks:

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	afternoon	P. Hustad	8.9 from 7.0.P.	437.18	
5-24-84	9:00 am	G. Ernstmann	9,4 from T.O.P.	436.48	
6-27-84	12:20pm	R. Robinson	9.84 from T.O.P.	436.22	
8-70-84	7:35am	G. Ernstmann	11.89 from T.O.P.	434.19	
8 - 16 - 84	8:00 am	G. Ernstmann	12.40 from T.O.P.	433.68	
8-20-84	7:30 am	G. Ernstmann	12.66 from T.O.P.	433,42	
8-21-84	11:30 am	G. Ernsimann	12,78 from 7,0.P.	433.30	
9-28-84	10:40 am	Gi Ernstmanil	13,2 from T.O.P.	432,88	
8-29-84	1:15pm	GiErnstmann	13,35 from T.O.P.	482,73	
10-3-84	1:12 pm	RiRolinson	13,84 from 7,0,P.	432,24	Electric Tape
10-26-84	9:12 am	G. Ernstmann	12,95 from 7,0,P.	433.13	4
12-19-84	10:450 M	G. Ernstmann	12.7 from T, O, P.	433,4	" "
3 -30.85	12:02 pm	Girnstmann	10.04 from T.O.P.	434.04	// //
4-75-85	11:20 211	C. Ernstunn	10.17 from T.O.P.	435.91	
6.7-85	Tier am	5. Paylatakis	10.32 from Tro.P.	435.76	<u> </u>
8-8-85		C. Payratoria	St. St. from Tit, P.	433,43	eloth Tape

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

080679

Burns & McDonnel

Form TS-GT-2-8

TECHNICAL	SER	VICES	
GEOTECHNI	CAL	DEPA	RTMENT

Sheet	0	f	

Project Name WESTLAKES Project No. 8		Project No. 84	4-075-4-002		Hole No. I-65 (old N-4)	
Location			Elev. Ground Surface (G.S.	1 438.5		
N	E		Elev. Top at Pipe (T.O.P.)	or Reference Point (R.P.	1 441.80	
Date Started Drilling Hole	Time		Total Depth of Hole	36,0	Drilling Type	
Date Completed Drilling Hole Time		· · · · · · · · · · · · · · · · · · ·		3610		
D D' ll-d			Total Depth of Piezometer	36.0	Footage Slotted	
Date Piezometer Installed	Time		Į.	34.0	10.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	12:52 pm	P. Hustad	4.5 from 7.0.P.	437.3	
5-24-84	/1:00 am	G. Ernstmann	5.0' from 7.0.P.	436.8	
6-27-84	1:12 pm	Ri Robinson	5.46 from T.O.P.	436.34	
0-8-84	1:40 pm	G, Ernstmann	7.43 from 7.0.P.	434.37	
8-21-84	12:20pm	G. Ernstmann	8,42 from T.O.P.	433,38	
8-30-84	8:55 am	G. Ernsimann	9.18 from T.O.P.	432.42	
10-3-84	11:50 am	R. Robinson	9.45 from 7.0.P.	432.35	Electric Tape
10-24-84	12:08 pm	G. Ernstmann	8.55 from T.O.P.	433.25), ,,
12-19-84	10:10 am	G. Erndmann	8,4 from 7,0.1.	433.4	J, 11
3-30-85	2:45 pm	G. Ernstmonn	5,33 from T,0.P.	436.47	steel tape
4-25-85	11:10 a hi	G. Ernstmann	5,83 from Tid.P.	435,97	Ele Tree lape
6-7-85	8:25 mm	5. Payiatakis	6.25 from T.O.P.	435,55	***
E-8-85	_	5. PayraTokis	7.78 from T.O.P.	4/33.82	cloth tapt
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SERVICES
GEOTECHNICAL DEPARTMENT

Shoot	o.f	
Sheet.		

Project Name WESTLAKES			Project No. 84-0	75-4-002	Hole No. I- 66 (old N-5)	
Location	<u> </u>			Elev. Ground Surface (G.S.) 437.7		
N	E			Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	441.80	
Date Started Drilling Hole		Time		Total Depth of Hole 36,9	Drilling Type	
Date Completed Drilling Hole	ate Completed Drilling Hole Time		3011			
Date Piezometer Installed		Time		Total Depth of Piezometer	Footage Slotted	
Date Piezometer Installed				Total Depth of Piezometer 3 6.9	Footage Slotted	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	afternoon	P. Hustad	¥ from		* water in ditch has surrounded the processing
5-24-84	11:15 am	G. Ernstmann	4.9' from T.O.P.	436.9	water in ditch, at base of piezome) is 3.4' below tothe (428.4)
6-27-84	1:18 pm	R. Robinson	5.40 from T.O.P.	436.4	
3-8-84	1:43 pm	G. Ernstmann	7.42 from T.O.P.	434,38	
8-21-84	12:25pm	G. Ennelmann	0.38 from T.O.P.	433.42	
8 - 30-84	9:05 am	G. ErnsTmann	9.05 from T.O.P.	432.75	
10-3-84	11:55 am	Rikobinson	7.36 from T,0,P,	432,44	Electric Tape
10-26-84	12:15 pm	G. Ernstmann	8.25 from T.O.P.	433.55	11
12-19-84	10:15 am	G. Ernstmann	8,2 from T.O.P.	433.6	<i>p</i> 10
3 - 30 - 85	_	G. Ernstmann	Sec from	~	Piez. is inoccessible because of water in ditch.
4-25.85	_	G. Ernstmann	from		" " " " " " " " " " " " " " " " " " " "
6-7-85	_	5. Payralakis	, from —		z' of water & surface
8-8-85		SiPayialakis	7.43 from T.U.P.	434,17	croth lape
5-20-86		M. Prio	4.12 from T.O.P.	432,68	
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL	SER	VICES		
GEOTECHNI	CAL	DEPA	RTME	NT

Sheet	of	

Project Name WEST	AKES	Project No. 8<	1-075-4-002	Hole No. F. G.7 (old N-G)
Location			Elev. Ground Surface (G.S.) 436,5	
N	E		Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	439,08
Date Started Drilling Hole	Time		Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	Time			
Date Piezometer Installed	Time		Total Depth of Piezometer 35.4	Footage Slotted

Remarks:

Date	Time	By Whom	Del	oth to V	Vater*	W.L. Elev.	Remarks
4-26-84	afternoon	P. Hustad	*	from	_	-	* water in ditch is above the top.
5-24-04	11:30 am	G. Ernstinann	*	from		-	* water in ditch is above
6-27-84	1:24 pm	R. Robinson	2.41	from	T.O.P.	436.47	
8-0-84	1:35pm	GIErnstmann	4,65	from	T.O.P.	434,43	
8-21-84	12:50 pm	G. Ernslinann	5.55	from	T.O.P.	433.53	
8-30-84	9:10 am	G. Ernstmann	6,55	from	T.O.P.	432.86	
10 - 3 - 84	noon	R. Robinson	4.42	from	Τ,0,ρ.	432.66	Electric Tape
12-19-84	10:19 am	G, Ernstmann	5,3	from	T.O.P.	433.8	11 /1
3-30-85	_	G. Ernstmann	See Remarks	from			piez. is inaccessible because of
4-25-85	_	GIErnstmann	,,	from	_	_	Prezometer is underwater.
6-4-85		5. Payla Takis		from		-	"
8-8-85		S, Payintakis	4.75	from	T.O.P.	434.32	cloth tape
				from			,
				from			
				from			
				from			

Burns & MDonnell

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	
Ottest	01	

Project No.	84-075-4-002	Hole No. I-68 (old N-7)
	Elev. Ground Surface (G.S.) 440.9	
	Elev, Top at Pipe (T,O,P,) or Reference Point (R,P.)	448.32
Time	Total Depth of Hole	Drilling Type
Time _	31.6	
Time	Total Depth of Piezometer	Footage Slotted / O. O
	Time	Elev. Ground Surface (G.S.) 440.9 Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.) Time Total Depth of Hole Total Depth of Piezometer

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	12:37pm	P. Hustad	10.9 from T.O.P.	437.42	
5-24-84	11:45am	G. Ernstmann	11.5 from T.O.P.	434.82	
6-27-84	1:30pm	RiRobinson	12,25 from T.O.P.	434.07	
8-8-84	1:47pm	G. Ernstmann	14.02 from 7.0.P.	434,30	
8-21-84	6:55 am	G. Ernstmann	14,9 from T.O.P.	433,42	Electric tape
8-30-84	9:20 am	G. Ernstmann	15,70 from T.O.P.	432,62	
10 -3-84	10:01 am	R. Actionson	15.84 from 7.0,P.	432,48	Electric Tape
10 - 26 - 84	12:00 noon	G. Ernstmann	14.55 from T.U.P.	433,77	8. **
12-19-84	10:40 am	G, Ernstmann	14.6 from T.D.P.	433.7	<i>(,</i> • • • • • • • • • • • • • • • • • • •
3-30-85	11:35am	Gi Ernstmann	11.17 from T.O.P.	437.15	ti ti
4-25-85	11:24 am	6. Ecnstmann	12,29 from T.o.P.	436.03	,
6-4-85	1:10 pm	5. Paylatakis	13.57 from T.o, P.	434.81	10
4-7-85	8:05 am	5. Payrolatio	11.30 from T.O.P.	437,02	
2-8-8 5	-	c. Phyladakis	14.17 from 1.0.8.	434.15	cloth tape
			from		
		· —-	from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of
-------	----

Project Name WESTLAKES		Project No. 84-075-4-002	Hole No. I-72 (old 39)
Location		Elev. Ground Surface (G.S.)	462.7
N	E	Elev, Top at Pipe (T.O.P.) o	r Reference Point (R.P.) 465,4
Date Started Drilling Hole	Time	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole Time			
		Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed	Time	5	3.0

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	Z:28pm	P. Hustad	28.15 from 7.0,P.	437.25	
5-23-84	1:00 pm	G. Ernstmann	28.4 from 7.0.P.	437.00	
6-27-84	1:35 pm	R. Robinson	28.66 from T.O.P.	436,74	
8-8-84	3:15pm	GrErnstmann	30.22 from T.O.P.	435,18	
8-20-64	1:10 pm	G. Ernstmann	31.05 from T.O.P.	434.35	Electric tape
8-29-84	10:25am	G. Ernstmann	31.81 from T.O.P.	433.59	
10 - 3 - 84	9:40am	R. Robinson	31.98 from T.O.P.	433,48	Electric Tope
10-26-84	10:35 am	Or Ernamann	31.05 from T.O.P.	434.35	
12-19-84	12:18 pm	G. Ernstmann	30.8 from T.O.P.	434.2	n n
3-30-85	11:50 am	G. Ernstmann	28.58 from T.o.P.	436.82	11
4 - 25 - 85	8:14 am	G. Ernstmann	29.21 from T.O.P.	436.19	1,
6-4-85	7:30pm	S. Payintakis	30.10 from T.O.P.	435.30	
6-7-85	7:40 am	S. Paylateris	29.33 from Tid, P.	436.07	••
e - 8 E5		s. Paylalakis	31.28 from T. 2.7-	434,12	cloth tape
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SER	VICES
GEOTECHNICAL	DEPARTMENT

Sheet	of	

Project Name	WESTLAKE	Project N	0. 84-075-4-002	Hole No. 1-73 (old 58)
Location			Elev. Ground Surface (G.S.)	462.7
N	E		Elev, Top at Pipe (T,O,P,) or Refer	rence Point (R.P.) 465.4
Date Started Drilling	Hole	Time	Total Depth of Hole	Drilling Type
Date Completed Dri	Iling Hole	Time		
			Total Depth of Piezometer	Footage Slotted
Date Piezometer Ins	talled	Time	50.0	3.0

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	2:31 pm	P. Hustad	26.15 from T.O.P.	436.55	
5 - 23 - 84	1:15 pm	G. Ernstmann	26.5 from 7.0.P.	436.2	
6-27-8 4	1:40 pm	R. Robinson	26.67 from T.O.P.	436.03	
8-8-84	3:17 pm	GIErnstmann	28.62 from T.O.P.	436.78	
8-20-84	1215 pm	GIECASTINAIIA	29,61 from T.u.p.	435.79	Electric Tope
8-29-64	10:27am	GiErnstmann	30.13 from T.O.P.	435.27	
10-3-84	9:43 an	R. Rubinson	29.97 from 7.0.P.	435,43	Electric Tape
10-26-84	10:38 am	G. Ernstmann	.4.0.T mort 05.85	436.20	., .,
12-19-84	15:50 bu	G. Ernstmann	29.1 from T.O.P.	434.3	. 11
3-30-85	11153 am	G.Ernstmann	27.17 from T.O.P.	438.23	14 14
4.25.85	8:17 am	G. Enastmann	27.58 from T.O.P.	437.87	
6-4-85	? :50 pm	S. Payintakis	28.48 from T.O.P.	436.92	· ,,
6-7-85	9:50 am	s. Payladakis	27.68 from T.O.P.	437,72	
8-8-82		S. Payratakis	29,48 from T.J.P.	435,92	cloth Tage
			from		,
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SERVICES GEOTECHNICAL DEPARTMENT

Observed Water Level Readings

Sheet	of	

Project Name WESTLAKE		Project No. 84-075-4-002	Hole No. 74 Q
Location		Elev. Ground Surface (G.S.)	
N	E	Elev, Top at Pipe (T.O.P.) or Refe	rence Point (R.P.) opprox. 465 ±5'
Date Started Drilling Hole	Time	Total Depth of Hole	Drilling Type
Date Completed Drilling Ho	ole Time	Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed Time		Total Depth of Tlezoniete	Footage Stotted

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	2:36pm	P. Hustad	17.3 from 7,0.P.	≈ 448	
5-23-84	1:15pm	G. Ernstmonn	15.5' from *T.O.P.	≈ 450	* highest point on top of Tilted
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet _____ of ____

Project Name WESTLAKE		Project No. 84-075-4-002	Hole No.S.75 (old 37)
Location	1	Elev. Ground Surface (G.S.) 4/5	8.8
N	E .	Elev, Top at Pipe (T.O.P.) or Reference P	oint (R.P.) 459, 9
Date Started Drilling Hole	. Time	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	Time		
Date Piezometer Installed	Time	Total Depth of Piezometer 26.0	Footage Slotted

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-26-84	2:03 pm	P. Hustad	21.4 from 7.0.P.	438.5	
5-24-84	12:30pm	G. Ernstmann	22.4 from 7.0.P.	437.5	
6-27-84	11:000m	R. Robinson	22.53 from T.O.P.	437.37	
8-8-84	4:05 pm	G. Ernstmann	24,33 from T.O.P.	435,57	
8-20-84	4:45 pm	G. Ernstmann	25,0 from T.O.P.	434.9	Electric Tape
8-24-84	1205 pm	G, Ernstmann	25,37 from T.O.P.	434.53	
8-29-84	10:05 am	G. Erns7mann	25,70 from ' T.O.P.	434,2	
10-3-94	10:50 am	R. Robinson	25.53 from T.O.P.	434,37	Electric Tape
10-26-84	10:22 am	G. Ernstmann	24.15 from T.O.P.	435.75	., .,
12-19-64	11:55 am	G. Ernstmann	24.3 from T.O.P.	435.6	1, 1,
3-30-85	1:55 pm	G. Ernstmann	17.50 from T.O.P.	442.4	steel tape
4-17-85		4	24.1 from	435.80	, , , , , , , , , , , , , , , , , , , ,
4-25-83	9:07 AM		22.88 from #	437.02	
6-7-85	12:30 PH	S. Payintoris		442.20	
8.8.85	_	, ,	21.18 from	438.72	Cloth Tape
			from		/

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet _____ of ____

Project Name	WESTLAKE Project No.		4-002	Hole No. 5-76 (old 37A)	
Location		Elev, Grou	and Surface (G.S.) 474.	4	
N	E	Elev. Top	at Pipe (T.O.P.) or Reference Point (R.P.)	477.5	
Date Started Drilling	Hole Ti	e Total Dep	th of Hole	Drilling Type	
Date Completed Drilling Hole Time			· · · · · · · · · · · · · · · · · · ·		
Date Piezometer Insta	alled Ti		th of Piezometer 50.0	Footage Slotted 3.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-27-84	9:30am	Bill Canney	40.7 from 7.0.P.	436.8	
5-23-84	4:00 pm	G. Ernstmann	40.5 from T.O.P.	437.0	
6-27-84	11:05 am	R. Robinson	40,54 from 7.0.P.	436.96	
8-8-94	4:10 pm	G, Ernstmann	42.21 from T.O.P,	435,29	
8-20-84	4:35 pm	G. Ernstmunn	42,95 from 7,0,P,	434.55	Electric tape
3-24- 64	1:10 pm	G. Ernstmann	43.34 from 7.0.P.	434.14	
8-29-84	10:15 am	G. Ernstmann	43,69 from T.O.P.	433.81	
10-26-84	10:15 am	GI Ernstmann	42.80 from T. D.P.	434,70	Electria Tape
12-19-84	11:52 am	Gi Ernstmann	42,6 from 7.0.p.	434.9	,, '1
3-30-85	1:45 pm	G. Ernstmann	40.92 from T.O.P.	436,58	steel Tape
4-25-85	9:05 AH	4	40.04 from	437, 46	
6-7-85	2:00 PM	S. Payia taxis	41.79 from	435.71	
8.8.85		,	43.24 from	434.26	Cloth Tape
			from		
			from		·
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL S	SER	VICES	i
GEOTECHNIC	AL	DEPA	RTMEN

Sheet	-4	
Sheer	ai	

Project Name WEST	LAKE		Project No. 84	-075-4-002		Hole No. S - 80	
Location	4			Elev. Ground Surface (G.S.)	448.4		
N 2592.7962	E	2619.0159		Elev. Top at Pipe (T.O.P.) o	Reference Point (R.P.)	453	.38
Date Started Drilling Hole	6-28-84	Time		Total Depth of Hole	23,0'	Drilling Type	SOLID AUGENS
Date Completed Drilling Hole	8-29-84	Time	_	Total Depth of Piezometer		Footage Slotte	
Date Piezometer Installed	8-29-84	Time	9:00 am	20.0		10.0	

Remarks:

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-26-84		G. Ernstmann	2 14' from G.S.	≈ 439	saturated material encountered
8-29-84	7:00 am	G. Ernstmann	12.9' from G.S.	440-48	water level Istanding in hole
8-29-84	9:00 am	G. Ernstmann	18.17 from T.O.P.	435,21	immediately after piezometer
8-29-89	9:30am	G. Ernstmann	17.4 from T.O.P.	435.98	
10-3-84	8:57AM	A. ROBINSON	18.6 from T.O.P.	434.78	Electric Tape
10-26-84	12:50 pm	G. Ernstinann	17.10 from T.O.P.	436.28	·
12-19-84	12:55 pm	G. Ernstmann	14,4 from T.O.P.	439.0	11 11
3 - 30 - 85	Z:30pm	G, Ernstmann	11,50 from Tio.P.	441.88	steel tape
4-17-85	-	4	9.90 from "	443.48	
4-25-85	12:29 PM		//.29 from •	442.09	
6.7-85	10:55 AM	S. Payintaris	14.18 from "	439.20	Class Tape
8-8-85	_		15.62 from	437.76	,
12-13-85		M. Erio	10.90 from #	442.45	Electric Tape
5-19-86	-	••	14.65 from 11	436.73	/
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

080679

Burns & Monnel
Engineers-Architects-Consultant

Form TS-GT-2-8

Sheet _____ of ____

Project Name WESTLA	IKE		Project No.	34-075-4-002		Hole No. D-81	
Location				Elev. Ground Surface (G.S.)	447,8	· · · · · · · · · · · · · · · · · · ·	
N 1144.2728	E	922,0145		Elev, Top at Pipe (T.O.P.) or	Reference Point (R.P.)	450.82	
Date Started Drilling Hole	6-13-84	Time		Total Depth of Hole	G1.5'	Drilling Type	WASH BORIES
Date Completed Drilling Hole	8-15-84	Time	10 000		<u> </u>		WASH EDKING
Date Piezometer Installed	8-15-84	Time	11:00 am	Total Depth of Piezometer	60.0'	Footage Slotted	15.0'

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-13-84	3:30pm	G. Ernsim ann	≈ 13' from G.S.	≈ 438	saturated material encountered
8-15-84	3:05pm	G. Ernstmann	16.63 from 7.0.P.	434.19	4 hours after piezometer
8-20-84	4:50pm	G. Ernsimann	17.6 from T.O.P.	433.22	Electric tape
8-21-84	9:15 am	G. Ernstmann	17.6' from T.O.P.	433,22	just before evacuating presoncter
8-21-84	9:37 am	G. Ernstmann	17.75 from T.O.P.	433,07	2 mins. after evacuating piczometer
8-24-84	1:25 pm	G. Ernstmann	16.94' from T.O.P.	433.88	
8-29-84	12:35 pm	G. Ernstmann	18.28 from T.O.P.	432.54	
10-24-84	10:25 om	G. Ernstmann	17.35 from T.O.P.	433,47	Electric tape
12-19-84	12:02pm	G. Ernstmann	17,3 from T.O.P.	433.5	11 /1
3 - 30 - 85	2:35 pm	Gi Ernstmann	14.92 from T.D.P.	435.90	steel tope
4-25-85	9:10 AM		15,88 from .	434.94	
6-7-85	12:35 PM	S. Payiataris	/5.73 from 4	435.09	
8-8-85			17.68 from "	433.14	Cloth Tape
12-13-85		M. Erio	14.71 from ,	436.//	Electric Tape
5-19-86	_	**	18.12 from #	432,70	
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL	SER	VICES
GEOTECHNI	CAL	DEPARTMENT

Sheet	-4	
Succi	01	

Project Name WEST	LAKE		Project No. 84	-075-4-002	Hole No. S-82
Location	,			Elev. Ground Surface (G.S.) 447, 7	
N 599.158	E E	19,3231		Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	450-69
Date Started Drilling Hole	8-24-84	Time	_	Total Depth of Hole	Drilling Type WASH- EURIAG
Date Completed Drilling Hole	8-27-84	Time		Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed	8-27-84	Time	1:45 pm	25,5	10.0'

Date	Time			W.L. Elev.	Remarks	
8-24-84	-	G. Ernstmann	11' To 13' from G.S.	below 434.	saturated material encountered	
8-27-84	1:45 pm	G. Ernstmann	18.2 from T.O.P.	432.49	immediately after piezonister	
8-29-84	12=20pm	GiErnstmann	18.25' from T.O.P.	432.44		
0-3-84	11:30am	R. Robinson	18.34 from T.O.P.	432,35	Electric Tape	
10-26-84	9:45 am	G. Ernslmann	17,51 from T.O.P.	433.18	**	
12-19-84	11:17 am	G. Ernstmann	17,5 from 7,0,P.	433.2	<i>(, (</i>)	
3-30-95	12:45 pm	G. Ernstmann	15,00 from T.O.P.	435.69	steel tape	
4-13-85	<u> </u>		/5.00 from //	435.69	,	
4-25-85	10:37 AH	<u>.</u>	15.46 from	455, 23		
6-7-85	12:45 PH	S. Payiataris	15.56 from //	435./3		
8.8.85	_	- h	17,53 from	433.16	Cloth Tape	
5-20-86		M. Erio	18.00 from #	432.69	<u> </u>	
12-12-85	_	,,	14.40 from "	434.29		
			from			
			from			
			from			

^{*}Depth_to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

	_	
Sheet	of.	
JIICEL		

Project Name 1カまら1	LE KE.		Project No.	84-075-4-002	Hole No. D. 83
Location		7		Elev. Ground Surface (G.S.) 444,4	
N 1742,70	93 ^E	1219,450	0	Elev, Top at Pipe (T.O.P.) or Reference Point (R.P.)	447,62
Date Started Drilling Hole	8-16-84	Time		Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	8-20-84	Time	_	Total Depth of Piezometer	VASH BORING
Date Piezometer Installed	8-21-84	Time	2:05 pm	97.0'	Footage Slotted 20.0'

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-16-84		G. Ernstmann	10.5' from G.S.	437.1	saturated material encountered during drilling.
8-21-84	2:05 pm	G. Ernstmann	14.50' from 7.0.P.	433.12	immediately after prezometer
8-27-84	10:40am	G, Ernstmann	14.84' from 7.0.P.	432,78	just prior to evacuating
8-27-84	11:17 am	G. Ernstmann	15.0 from T.O.P.	432.62	4 minutes after evacuating the piezameter.
8-29-84	1:05 pm	GIErns7mann	15.04' from T.O.P.	432.58	
10 - 3-84	1:10 pm	RiRobinson	15,39 from 7.0.P.	432,23	Electric Tape
10-24-84	9:10am	G. Erns7mann	14.55 from 7,0.P.	4 33, 07	. "
12-19-84	10:47ahi	G. Ernstmann	14,4 from T.O.P.	433.2	J
3-30-85	12:00 noon	G. Ernstmann	11.46 from 7.0.2.	436.14	., .,
4-25-85	10:58 AM	· · · · · · · · · · · · · · · · · · ·	1/83 from "	485.79	/
6-7-85	9:05 AH	S. Pagiafacis	12.14 from 6	435.48	
8-8-85			14.18 from "	433, 44	Cloth Tage
12-12-85		M. Erio	10.56 from	437.06	Electric Tope
5-19-86		•,	15,08 from	432,54	
			from		
	·		from	,	

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet _____ of ________

Project Name [75.01	GAKE		Project No.	1-075-4-002		Hole No. 5 • 84	
Location				Elev, Ground Surface (G.S.)	452,9		
N 340,0	038 E	1998.2729	,	Elev. Top at Pipe (T.O.P.) or F	Reference Point (R.P.)	456.92	
Date Started Drilling Hole	8-24- 84	Time		Total Depth of Hole	31.5	Drilling Type SOLID AUGERS	
Date Completed Drilling Hole	8-24-84	Time	_	Total Depth of Piezometer		Footage Slotted	
Date Piezometer Installed	8-24-84 Time		12:20pm	30.9'		10.0	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-24-84		G. Ernstmann	13' To 20' from G.S.		few thin saturated zones encountered during drilling.
8-24-84		G. Ernstmann	20' from G.S.	437'	saturated material below 20'
e-24 - 89	12;20pm	G. Ernstmann	23,7 from 7.0.P.	433.22	immediately after prezometer
8-27-84	7:15 am	G. Ernstmann	23.91' from 7.0.P.	433.01	
8-27 - 84	9:20 am	G, ErnsTmann	23.92 from T.O.P.	43 3,00	just prior to evacuating
8-27-84	7:15 pm	G. Ernstmann	23.98 from 7.0.P.	432,94	the presemeter
e-30-84	9:16 am	G. EINSTMANA	24.28 from T.O.P.	432,64	
10-3-84	10:05 am	A. Robinson	24,32 from T.O.F.	432.60	Electric Tape
10-26-84	11:56 am	G. Ernstmann	23,20 from T.O.P.	433,72	', ''
12-19-84	10:35 am	G. Ernatmann	23,3 from T.O.P.	433,6	"
3 - 30 - 85	11:22am	G, Ernstmann	20.33 from T.O.P.	436,59	1. "
4-25-85	11:15 AH	*	20.83 from "	436.09	
6-4-85	12:30 PM	S. Payin taxis	22.25 from	434.67	
6-7-85	8:00 AH	,	21.16 from "	435.76	
8-8-85		٥	22.96 from	433.96	Cloth Tape
12-13-85	_	M. Erio	19.85 from ,,	437.07	Electric Tape

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SERVICES GEOTECHNICAL DEPARTMENT

Observed Water Level Readings

Sheet Z of Z

Project Name WESTLAKE	Project No. 34	- 975-4-002	Hole No. 5 - 84
Location		Elev. Ground Surface (G.S.)	See Shect)
N see short 1 E		Elev. Top at Pipe (T.O.P.) or Referen	nce Point (R.P.)
Date Started Drilling Hole Time		Total Depth of Hole	Drilling Type
Date Completed Drilling Hole , Time	1.		· · · · · · · · · · · · · · · · · · ·
Date Piezometer Installed ,. ,. Time		Total Depth of Piezometer	Footage Slotted

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
5-20-86	-	M. Erjo	24.19 from T, O. P.	432,73	4
			from		e./
			from		
	-		from		
			from		
			from		
			from		
	<u> </u>		from		
			from		
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet of	

Project Name WES	TLAKE	Pro	eject No.	84-075-4-002	Hole No. D-85
Location				Elev, Ground Surface (G.S.) 453.1	
N 340.54	14 E	1986.8430		Elev, Top at Pipe (T.O.P.) or Reference Point (R.P.)	457.15
Date Started Drilling Hole	8-21-84	Time	_	Total Depth of Hole	Drilling Type WASH BORING
Date Completed Drilling Hole	8-22-84	Time	_	Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed	8-24-84	Time 10	:00 an	@Z.0 '	50.0

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-22-84	7:30 am	G. Ernstmann	approx, from G.S.		saturated material ancountered during drilling.
8-24-84	10:00 am	G. Ernstmann	20,05 from T,0,P.	437.10	immediately ofter presonneter
8-27-84	7:15 am	G.Ernstmann	24.09 from T.O.P.	433.06	
8-27-84	9:40 am	G. Ernsimana	24.12 from +. O.P.	433.03	Just prior to evacuating prezameter with compressed are
8-27-84	2:20pm	G. Ernstmann	24,21 from T.O.P.	432.94	about 4/2 hrs. after evacuating the piezometer.
8-30-84	9:15 am	GIErnstmann	24,50 from T.O.P.	432.65	, , ,
10-3-84	10:07 am	R. Robinson	24,54 from 7.0.P.	432.61	Electric tape
10-26-84	11:55 am	GiErnstmann	23,35 from T.O.P.	433.80	· · · · · · · · · · · · · · · · · · ·
12-19-84	10:37 an	G. Ernstmann	23.5 from T.O.P.	433.4	,, ,,
3-30-85	11:20am	G. Ernstmenn	20,62 from 7,0,p.	136,53	p A
4.25-85			21.08 from "	436.07	,
6-4-85	12:53 PM	S. Payiatoris	22.48 from "	434.67	
6.7-85	8:00 AH	<u>/</u>	2/.23 from +	435.92	
8.8.83			23.22 from "	433.93	chtl. Tape
12-11-85		M. EHO	20.20 from //	436.95	Electric Tape
5-20-86	~	4,	24.40 from	432.75	′

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet \perp of 2

Project Name WEST	LAKE		Project No.	84-075-4-002	Hole No. D-87
Location		· · · · · ·		Elev. Ground Surface (G.S.)	
N 114,45	E	903.6487		Elev, Top at Pipe (T,O,P,) or Reference Point (R,P,)	443.04
Date Started Drilling Hole	8-9-84	Time		Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	8-10-84	Time	_	Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed	8-10-84	Time	-	///.0'	20.0'

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-9-84	_	G. Ernstmann	27 from G.S.		saturated material encountered during drilling.
8-10-84	_	G. Ernstmann	4.46 from 7.0.P.	458.58	immediately after piezometer
8-14-84	8:15 am	G. Ernstmann	26,05' from T.O.P.	436.99	
8-20-84	12:50 pm	G. Ernsimann	29.75 from T.O.P.	433.29	
8-23-84	1:30 pm	G. Ernstmann	30.0' from 7.0.P.	433.04	before surging well.
8-23-84	3:30 pm	G. Ernstmonn	30.3' from T.O.P.	432.74	few minutes after surging and hailing the well.
8-27-84	10:15 am	G. Ernstmann	29,29' from T.O.P.	433.75	piezometer with compressed air
8-27-84	10:32 am	G. Ernstin ann	30,5 from T, O.P.	432.54	4 minutes after evacuating the piezometer.
8-29-84	11:15 am	G. Ernstmann	30,46 from T.O.P.	432.58	
10-3-84	9:50 am	R. Robinson	30.61 from T.J.P.	432,43	Electric Tape
10-26-84	10:45 am	G. Ernstmann	29,75 from T.O.P.	433,29	
12-19-84	10:43 am	G. Ernstmann	29,6 from T.O.P.	433.4	11 11
3-30-85	11:39 am	G. Ernstmann	27,09 from T,O.P.	435,95	te e
4-25 - 85	18:30 AM		27,50 from "	435, 54	· ·
6-4-85	1:20 PM	S. Payia taxis	28.74 from 6	434.30	
6-7-85	8:35 PM		27.88 from "	435, 16	

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SER	VICES
GEOTECHNICAL	DEPARTMENT

Sheet 2 of 2

Project Name	WESTLAKE		Project No. 94 -	075-4-002		Hole No. D - 87
Location				Elev. Ground Surface (G.S.)	See	Sheet 1
N See	sheet 1 E			Elev. Top at Pipe (T.O.P.) or Refere	ence Point (R.P.)	• •
Date Started Drilling Hole	•	Time	1.	Total Depth of Hole),	Drilling Type
Date Completed Drilling Hole	¢1	Time	• •	Total Depth of Piezometer	· · · · · · · · · · · · · · · · · · ·	Footage Slotted
Date Piezometer Installed	11	Time	• ,		1 1	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-8-85		"	29.78 from 4	433, 26	Cloth Tapa. Electric Tapa
12-11-85	-	M. Erio	26.75 from "	436,54	Electric Tape
5-20-86		>	27,75 from >	435,29	
	·		from		
			from		
1			from		
	. –		from		
			from		
			from		
			from		
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet _____of ____

Project Name	LAKE		Project No.	34-075-4-002	Hole No. 5 • 98
Location				Elev. Ground Surface (G.S.) 460.0	
N 495.04	6) E	309.2279		Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.	.) 462,73
Date Started Drilling Hole	8-15-84	Time	<u> </u>	Total Depth of Hole 4/,5	Drilling Type WASH BORING
Date Completed Drilling Hole 8-16-84 Time		Time			
Date Piezometer Installed	8-16-84	Time	11:00 am	Total Depth of Piezometer	Footage Slotted

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-15-84	_	G. Ernstmann	18' 70 24' from G.S.		during drilling:
0-15-84		G. Ernstmann	24' from G.S.	439'	saturated material encountered
8-16-84	11:00 am	G. E rastmann	29.3' from TiO.P.	433,43	inmediately after prezometer
8-20-84	1:00 pm	G. Ernstmann	29,50' from 7,0,p.	433,23	Electric Tape
8-21-84	8:38 am	G. Ernstmann	29,46' from T.O.P.	433,27	just before evacuating piezometer with compressed our
8-21-84	9:01 am	G. Ernstmann	29,8 from T.O.P.	432,93	1/2 mins. after evacuating
8-24-84	1:30 pm	G. Ernsomann	29,90' from T.O.P.	432.83	
8-29-84	11:10 am	G. Ernstmann	30,20 from T.O.P.	432,53	
10 - 3 - 84	10:45 am	R. Robinson	30,34 from T.O.P.	432,39	Electric Tape
10-26-84	10:40 am	Gi Ernstmann	29.50 from T.O.P.	433,23	ı, <i>"</i>
12-19-84	12:11 pm	G. Frastmann	29,4 from T.O.P.	433.3	21 21
3-30-85	11:45 an	G. Ernstmann	27.00 from T.O.P.	435,37	1, 1,
4-25-85	8:25 AM		27.50 from #	435,23	,
6-4-85	2:10 PH	3. Payidfacis	28.81 from 4	453.92	
6-7-85	9:17 AM	"	27.71 from "	435.02	
8-8-85			29.65 from #	433.08	Cloth Tape

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL	SER	VICES	\$	
GEOTECHNIC	CAL	DEPA	RTM	ENT

Sheet _____ of _____

Project Name WESTLAKE Project N			Project No. 8	4-075-4-002	Hole No. 5 - 88			
Location		:			Elev, Ground Surface (G.S.)	 ડ૮૨	Sheet 1	
N	See Sheet	E			Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)			
Date Started Dril	ling Hole	• •	Time	٠.	Total Depth of Hole	11	Drilling Type	,.
Date Completed	Drilling Hole	1.	Time	٠.	Total Depth of Piezometer		Footage Slotted	
Date Piezometer	Installed	• •	Time	٠,		• •	. Solago Giorrea	• •

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
12-11-85	•	m, Erio	24.48 from T.O.f.	436.25	Electric Tage
5-20-86	•	11	29,79 from 11	432.94	
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL	SER	VICES	
GEOTECHNIC	CAL	DEPARTMEN	١T

Chasa	-4	
Sheet	ot	

Project Name	WES	TLAKE		Project No.	4-075-4-002	Hole No. D. 89
Location					Elev. Ground Surface (G.S.) 454.1	
N	1790,55	14 E	602,6094	_	Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	457.10
Date Started Dri	lling Hole	8-27-84	Time		Total Depth of Hole 49,0	Drilling Type
Date Completed Drilling Hole		8-28-84	Time			Footage Slotted
Date Piezometer	Installed	8-28-84	Time	1-30 pm	Total Depth of Piezometer 49,0	/5.0 '

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-27-84		G, Ernstmann	15' ro 20'from G.S.		few thin saturated zones encountered during drilling.
8-27-84	-	G. Ernstmann	ZI' from G.S.		saturated material encountered
8 - 28 - 84	1:30 pm	G. Ernstmann	22.3' from T.O.P	434.8	immediately after prezometer
8-29-84	10:30 am	G. Ernstmonn	24,50 from T.O.P.	432,60	Just prior to evacuating prezometer with compressed all
8-29-84	11:45 am	G. Ergstinann	24.65 from T.O.P.	432.45	the prezoneter.
10-3-84	9:33 am	R. Robinson	24.73 from T,O.P.	432,37	Electric Tape
10-26-84	12:19 pm	G. Ernstmann	23,65 from T.O.P.	433,45	1, 1,
12-19-84	/2:30 pm	G. Frestmann	23.6 from 7.0.A.	433.5)) Je
3 -30- 65	2:00 pm	G. Ernelmann	21,25 from 7,0.P.	435.85	sicel tape
4-25- 85	11:35 AH		22.13 from v	434. 97	,
6- 4- 85	1:15 PM	S. Payiataris	22.95 from "	434.15	
6-7-85	10:05 AM		27.0 from	435.09	
8-8-8 5			24.10 from #	433.00	Cloth Tape
12-13-85		M. Erio	2/. 07 from A	436.03	Electric Tape
5-19-86		··	24.79 from "	432,81	/
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SER	VICES
GEOTECHNICAL	DEPARTMENT

Sheet	of	
JIICCL		

Project Name	WESTLAKE		Project No.	4-075-4-002	Hole No. Earth City #8
Location E	anth City, wee	t of the landf.	li	Elev. Ground Surface (G.S.)	
2		E		Elev. Top at Pipe (T.O.P.) or Reference	Point (R.P.) 441,87
Date Started Dril	ling Hole	Time		Total Depth of Hole	Drilling Type
Date Completed	Dritting Hole	Time	_	Total Depth of Piezometer	Footage Slotted
Date Piezometer	Installed	Time			

Remarks:

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-30-84	12:30pm	G. Ernstmann	8,7 from 7,0,P.	433.17	
			from		·
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

080679

Burns & M®onnell

Form TS-GT-2-8

Sheet	of	
JIICEL	01	

Project Name	WESTLAKE	Project No.	34-075-4-602	Hole No. Earth City # 9
Location Earth	City, west of the landfill		Elev. Ground Surface (G.S.)	436
N	Ę		Elev. Top at Pipe (T,O.P.) or Reference Point (R.F	441.85
Date Started Drilling Ho	ole Time		Total Depth of Hole	Drilling Type
Date Completed Drillin	g Hole Time		-	
Date Piezometer Install	ed Time	_	Total Depth of Piezometer	Footage Slotted

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
10-26-84	1:20pm	G. Ernstmann	7,4 from T,0,P.	434,45	
12-19-84	11:22am	G. Ernstmann	7.7 from T.O.P.	434.2	
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SER	VICES
GEOTECHNICAL	DEPARTMENT

Sheet	_	of _	

Project Name WESTLAKE	Project No.	84-075-4-002	Hole No. Earth City # 12
Location Earth City, west of the	land-fill	Elev. Ground Surface (G,S,)	
N E		Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.)	440.59
Date Started Drilling Hole	Fime	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	Time	Total Depth of Piezometer	Footage Slotted
Date Piezometer Installed	Time	Total Depth of Fiezometel	i obtage stotted

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
8-30-84	1200pm	G. Ernstmann	7.7 from T.O.P.	432.89	
			from		
			trom		
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	

Project Name WE.	STLAKE		Project No. 84-	075-4-002	Hole No. SMP-63
Location Ponded s	surface water	er north of Kund	site, southwest	Elev. Ground Surface (G.S.)	
N		<u>-</u>		Elev. Top at Pipe (T.O.P.) or I	Reference Point (R.P.)
Date Started Drilling Hole	N.A.	Time		Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	N.A.	Time	-		
Date Piezometer Installed	N.A.	Time	_	Total Depth of Piezometer	Footage Slotted

Remarks:

Reference point is a rod located in the ponded water north of the site in the ditch southwest of St. Charles Ruck Ruad. The rod is marked in increments of O.I foot and starts with 0:0 at the Luttum and ends at approximately interest at the top. The top of the rod is under water during most of the spring and Parly summer.

Date	Time	By Whom	Height of Water*	W.L. Elev.	Remarks
10-15-84	12:15pm	Bill Canney	10.21 from R.P.		,
10-26-84	9:15 am	G. Ernstmann	11.05 from R.P.	·	71
12-19-84	10:53 am	G. Ernstmann	11.4 from R.P.		
2 - 30 - 84	_	G. Ernstmann	* from _		* Reference rod is submerged
			from		
			from		
			from		
			from		
			from		
			from		
			from		
			from		·
•			from		
			from		
			from		
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

TECHNICAL SER	VICES
GEOTECHNICAL	DEPARTMENT

Sheet	of	
Succi	ot	

Project Name WEST	AKE	Project No.	84-075-4-004	Hole No. D-90
Location			Elev, Ground Surface (G.S.)	
N	É		Elev. Top at Pipe (T.O.P.) or Referen	nce Point (R.P.) 450. 60
Date Started Drilling Hole	8-6-85	Time	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	0104	Time		Solid Auger & Rotary Wash
Date Piezometer Installed	8-7-85 8-7-85	Time 9:50 AM	Total Depth of Piezometer	F6otage Slotted '

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
12-13-85	_	M. Erio	13.87 from 7.0. P.	436.73	Electric Tape
5-14-86			15,38 from *	435.22	·
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	
-------	----	--

Project Name wES74	AKE	Project No.	84-075-4-004	Hole No. D-91
Location			Elev. Ground Surface (G.S.)	
N	E		Elev. Top at Pipe (T.O.P.) or Reference Poi	nt (R.P.) 453.37
Date Started Drilling Hole	8-5-85	Time	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	8- 5 -85	Time	Total Depth of Piezometer	Solid Auger Footage Slotted
Date Piezometer Installed	8-6-85	Time 9:00	45.0	10'

Date	Time	By Whom	Dej	oth to Wat	er#	W.L. Elev.	Remarks
12-13-85		M. Erio	15.43	from	7. o.P.	437.95	Electric Tape
5-19-86	~	••	17.29	from	"	434-08	<u> </u>
				from			
`				from			
	•			from			
				from			-
				from			
				from			
*	-			from			
				from			
	<u> </u>			from			
				from			
	· ·-·			from			
				from			
				from			
		†	1	from			

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	
SHEEL	0	

Project Name WESTLAKE			Project No. 84-075-4-002			Hole No. D-92
Location	i		Elev. G	round Surface (G.S.)	≈ 475.5	
N	E		Elev. T	op at Pipe (T.O.P.) or Re	ference Point (R.P.)	475.37
Date Started Drilling Hole	4-9-85	Time	Total C	Depth of Hole	3.6	Drilling Type
Date Completed Drilling Hole	mpleted Drilling Hole Time					
Date Piezometer Installed	4-11-85	Time	Total L	epth of Piezometer	5 .0	Footage Slotted

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-17-85	11:15 AM	G. Emstwany	38.9 from 7.0.P.	436.47	
4-22-85	10:30 AH		40.2 from "	435.17	
4-23-85	3:30 PM	u	39.3 from 4	436.07	
4-24-85	Ties AM	· · · · · · · · · · · · · · · · · · ·	40,5 from	454.87	
4-25.85	8:30 AM		40.04 from u	435.33	Electric Tape
6-4-85	1:40 PH	S. Payintoris	41.17 from ",	434,20	,
6-7.85	8:40 AH	<i></i>	38,06 from .	437.31	
8-8-85			42.08 from "	433,29	Cloth Tope
12-12-85		M. Erio	38.55 from //	436.82	Cloth Tape Electric Tape
5-19-86	-		42.40 from	432.97	,
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet	of	_

Project Name WESTLAKE			84-075-4-002	Hole No. D-93
Location	_		Elev. Ground Surface (G.S.) \approx 44	8
N	E		Elev, Top at Pipe (T.O.P.) or Reference Point (R.P.) 450.7
Date Started Drilling Hole	4-15-85	Time	Total Depth of Hole	Drilling Type
Date Completed Drilling Hole	A 10 0	Time	1/9.2	Wash bore
	4-18-85		Total Depth of Plezometer	Footage Slotted
Date Piezometer Installed 4-18-85		Time /:30 <i>P</i> ∼	,	20′

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-22-85	10:30 AH	G. Ernstmann	15.3 from T.O.P	435.4	
4-24-85	7:00 AM	/	15.5 from 4	43.5.2	
4-25-85		<i>"</i>	15.46 from #	435.24	Electric Tope
6.1-85	1:00 PM	S. Payin takis	15,5/ from '//	435.19	·
8 . 8 - 85		<u> </u>	17.50 from "	453.20	cloth Tape
12-12-85	-	M. Erio	14,24 from "	436.46	cloth Tape Electric Tape
5-20-84	•	••	17.94 from *	432.76	,
			from		
			from		•
			from		

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

CL		
Sheet	ot	

Project Name WESTLAKE			Project No. 84.	.075- 4-00Z	Hole No. D-94
Location				Elev. Ground Surface (G,S.) \approx 438.5	
N	' E			Elev. Top at Pipe (T.O.P.) or Reference Point (R.P.	442.68
Date Started Drilling Hole	4-18-85	Time	<u> </u>	Total Depth of Hole	Drilling Type Wash toning
Date Completed Drilling Hole 4-24-85 Time		Time			
Date Piezometer Installed	4-24-85	Time	3:00 PM	Total Depth of Piezometer	Footage Slotted

Date	Time	By Whom	De	pth to W	ater*	W.L. Elev.	Remarks	
4-25-85	11:08AM	G. Ernstmann	7.29	from	T.O.P.	435.39	Electric Tape	
6-4.85	1:50 PM	5. Payintaris	7.88	from		434.80		
6-1-85	8:15 AH		6.98	from		435.70		
8-8-85		<u> </u>	8.75	from		433.93	Cloth Tape Electric Tape.	
12-12-85		M. Erlo	5,25	from		437.43	Electric Tape.	
5-20-86	~		10.90	from	41	431.78	,	
·				from	- <u>-</u>	l		
				from				
				from			·	
				from				
			ŧ	from				
				from				
				from				
	·			from				
				from				
				from				

^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

Sheet _____ of ____

Project Name WEST LA	KE	Project No. 84	-075-4-002	Hole No. D-95	
Location			Elev. Ground Surface (G.S.) ≈ 450		
N	E		Elev. Top at Pipe (T.O.P.) or Reference Point (R.	^{P.)} 453.09	
Date Started Drilling Hole	4-22-85	Time	Total Depth of Hole	H.S. Auger & wash-foring	
Date Completed Drilling Hole 4-24-85		Time	Total Depth of Piezometer	Footage Slotted	
Date Piezometer Installed	4-24-85	Time 3:00 Pr7	/olio	20	

Date	Time	By Whom	Depth to Water*	W.L. Elev.	Remarks
4-25-85	12:00 PH	G. Ernstmann	16.75 from T.O.P.	436,34	Electric Tape
6-7-85	10:35 Am	G. Ernstmany S. Payinfacis	17.02 from 1	436.07	,
8.8-85	_	/ "	/9.0/ from //	434.08	Cloth Tape Electric Tape.
12-12-85		M. Erio	15.35 from "	437.74	Electric Tape.
5.21-86		<i>4</i> •	20,46 from "	432.63	/
			from		
			from		
			from		•
			from		·
			from		
			from		
			from		
			from	:	
			from		
		<u> </u>	from		
			from		

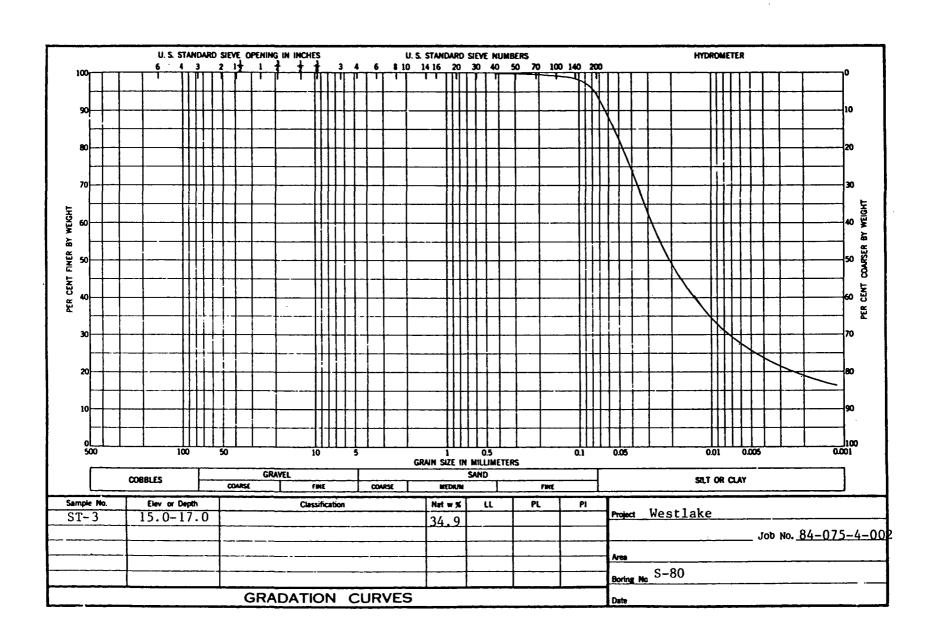
^{*}Depth to water noted from Ground Surface (G.S.), Top of Pipe (T.O.P.), or Reference Point (R.P.).

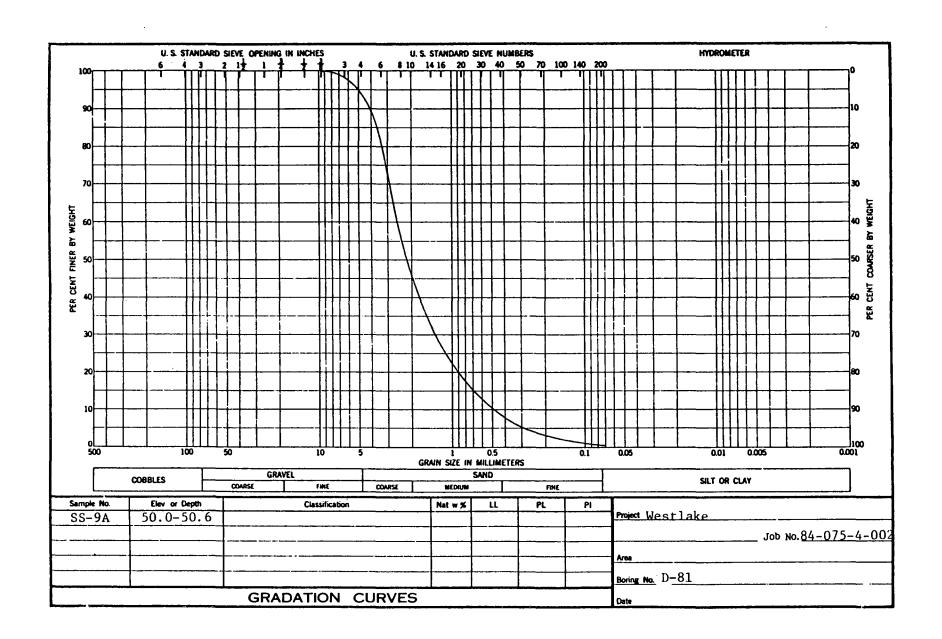
APPENDIX D

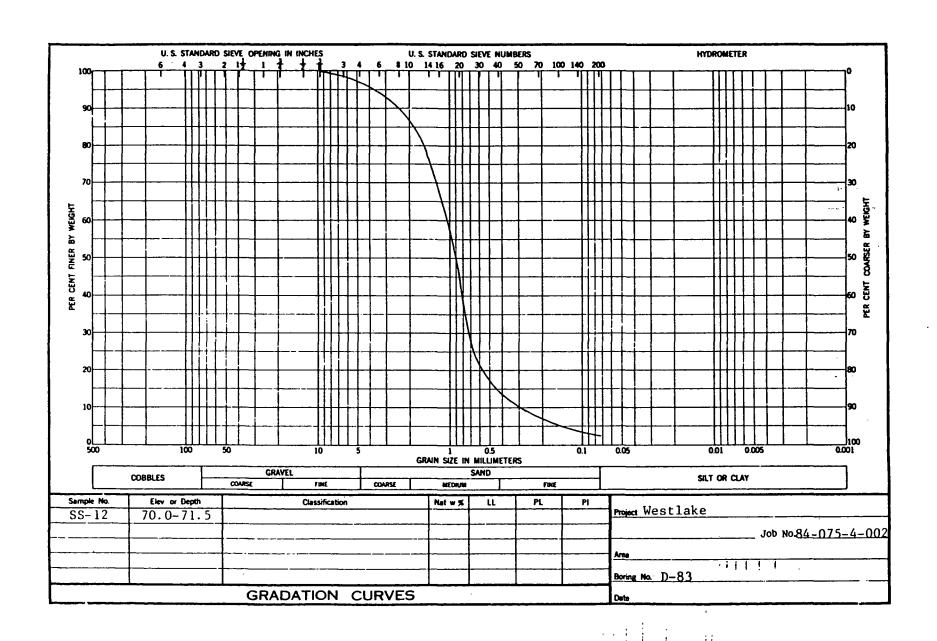
LABORATORY TEST DATA ON SOIL ENGINEERING PROPERTIES

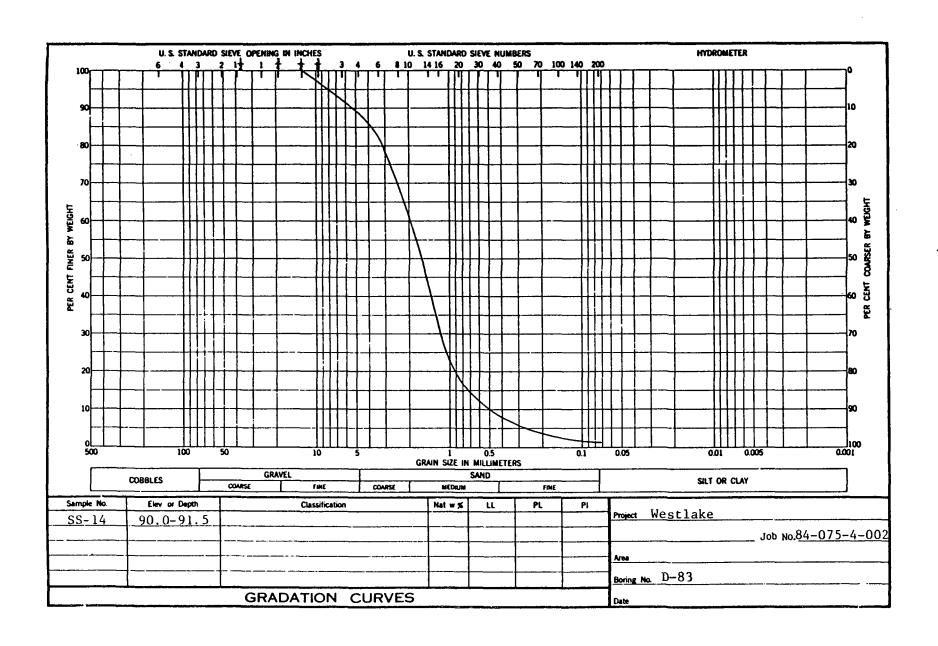
TABLE D-1
Permeability of Alluvium

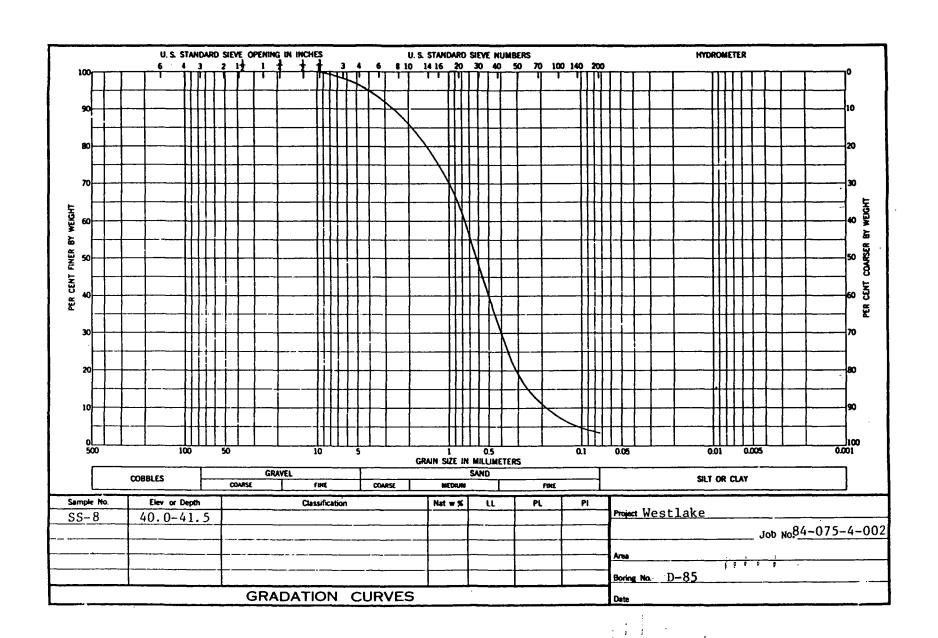
Boring	Depth	Sample	Method	Permeability (cm/sec)
D-81	50.0 to 50.6	SS-9a	* Hazen's Formula	2.5×10^{-1}
D-83	73.5 to 97.0	N.A.	** Bailer Test	5.11×10^{-4}
D-83	70.0 to 71.5	SS-12	Hazen's Formula	9.0×10^{-2}
D-83	90.0 to 91.5	SS-14	Hazen's Formula	2.5×10^{-1}
D-85	40.0 to 41.5	SS-8	Hazen's Formula	4.0×10^{-2}
D-85	70.0 to 71.5	SS-11	Hazen's Formula	1.2×10^{-2}
D-87	87.0 to 111.0	N.A.	Bailer Test	3.35×10^{-4}
D-87	100.0 to 101.0	SS-20	Hazen's Formula	6.8×10^{-2}
S-88	30.0 to 31.5	SS~5	Hazen's Formula	2.3×10^{-2}
S-88	29.0 to 40.0	N.A.	Bailer Test	1.45×10^{-3}
D-89	32.5 to 49.0	N.A.	Bailer Test	2.44×10^{-4}


^{*} Hazen's Formula is used to estimate permeability based upon soil grain size distribution. (see Hazen, A., 1930, Water Supply, American Civil Engineers Handbook, John Wiley and Sons, Inc., N.Y.)

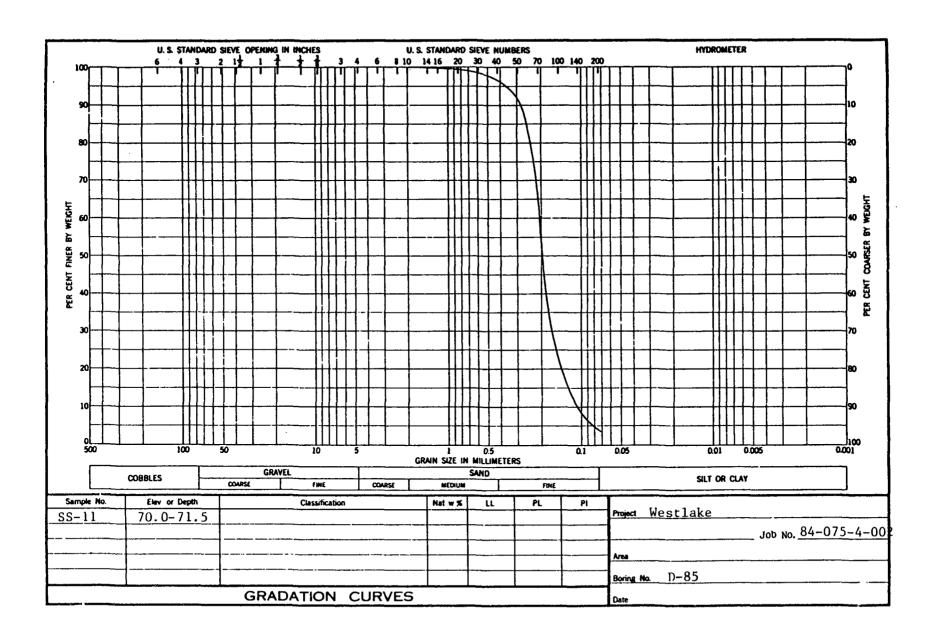

^{**} A bailer test is a field method for determining in-situ permeability.

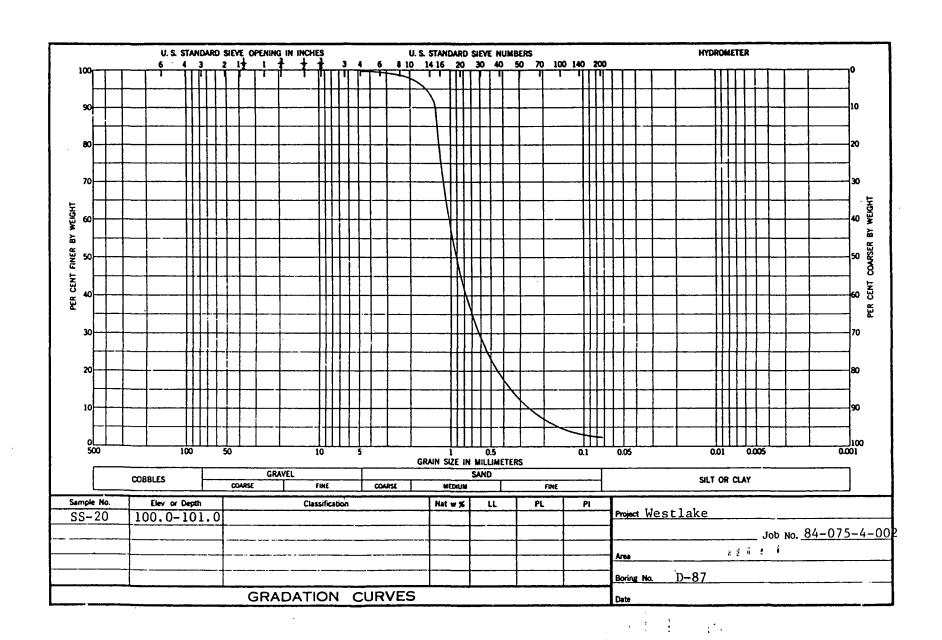

Water was evacuated from the piezometer with a compressed air pump and the rate of recovery recorded. The rate of recovery is related to the soil permeability (see Hvorslev, M. Juul, 1951, Time Lag and Soil Permeability in Groundwater Observations, Waterways Experiment Station, Corps of Engineers, U.S. Army, Vicksburg, Mississippi, Bulletin No. 36.

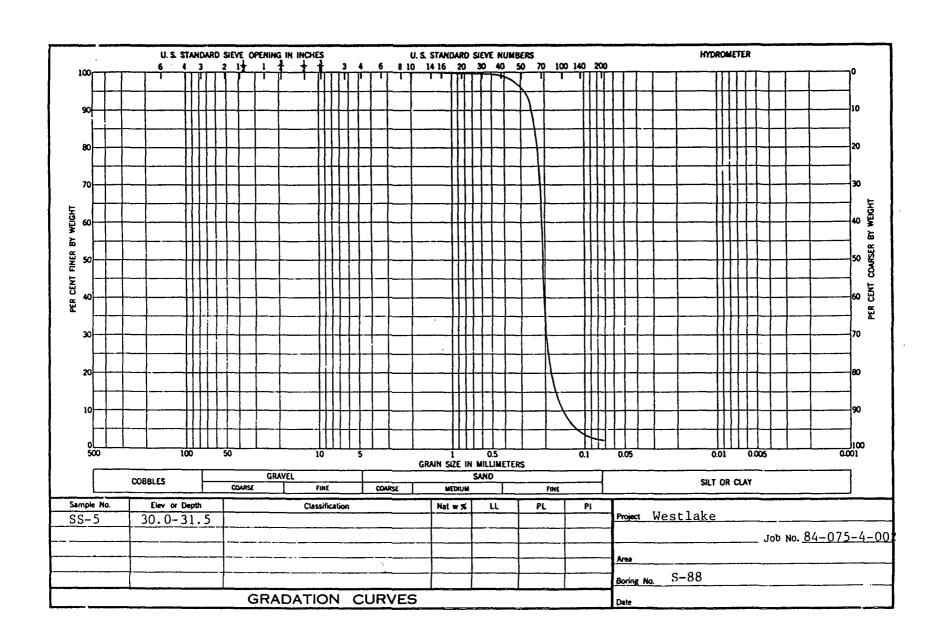

SUMMARY OF SOIL TESTS


PROJECT_We	stlake												PRO	JECT 1	NO_8	4-075-4-002
BERG			% Moisture	TURE COMP PCF INCOME		ICONFINED DMPRESSION		ATTERBERG LIMITS		%	UNIFIED CLASSIFICATION					
BORING NUMBER	SAMPLE NUMBER	ft	SIOW	DRY WT-	PSF	%E	LL	PL	PI	-200	UNII					REMARKS
S-80	ST-3	15.0-17.0	34.9	87.9						94.6						
	ST-4	20.0-22.0	48.3	75.8			57	21	36		СН					

D-81	SS-9A	50.0-50.6								0.7			ļ	<u></u>		
			,											ļ		
D-83	SS-3A	15.0-15.7	32.4	90.7			25	21	4		CL/M					
	SS-12				ļ	<u></u>				2.3					ļ	
	SS-14	90.0-91.5				<u></u>				1.2						
	ļ			ļ	 -	<u> </u>	<u> </u>								ļ	
D-85	SS-8	{ 		ļ			<u> </u>			3.4				<u> </u>		
	SS-11	70.0-71.5	ļ						 	3.6			ļ <u>-</u>	ļ	<u> </u>	
	ـــ			<u> </u>											 	
D-87	SS-20	100.0-101.0			ļ					2.3				ļ	<u> </u>	
	 			 -	<u> </u>									ļ	<u> </u>	
S-88	SS-5	30.0-31.5	ļ	ļ			 			2.2						· · · · · · · · · · · · · · · · · · ·
						_			 				<u> </u>			
	 				ļ						_		 			
														 		
	 				<u> </u>											
	1	j	l						}	l			ŀ		ł	







APPENDIX E

GROUNDWATER CHEMICAL ANALYSES

PRIORITY POLLUTANTS
DECEMBER, 1985

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL

Units: MCG/ML

Batch #: B-5120530

Customer ID: S-51 METALS ETSRC ID: 5120530

Elm : Result
AG : <0.003
AL : <0.02
AS : <0.06
B : <0.05
BA : 0.130
BE : <0.003
BI : <0.06
CA : 62.9
CD : <0.003
CO : <0.006
CR : <0.02
CU : 0.01
FE : 0.020
K : <0.4

MG: 19.9 MN: 0.031

LI: 0.011

MO : <0.007 NA : 4.79

NI : <0.02 P : <0.2

PB : <0.04

SB : <0.04 SE : <0.08

SE: <0.08 SI: 8.56

SN : <0.02

SR: 0.149

TI : <0.002 TL : <0.1

V : <0.003

ZN: 1.24

ICP Scan - Sample Analysis Report
Project: BURNS AND MCDONNELL Units: MCG/MI Units: MCG/ML

Batch #: B-5120530

Customer ID: I-59 METALS ETSRC ID: 5120532

Elm : Result AG: <0.003 AL: <0.02 AS: <0.06 B : 1.2 BA: 0.352 BE : <0.0003 BI : <0.06

CA: 259. CD : <0.003 CO: <0.006 CR : <0.02 CU: 0.057

FE: 7.38 K : 7.4 LI : 0.041

MG: 63.3 MN: 0.846 MO: <0.008

NA: 138. NI: 0.03

P: 0.3 PB : <0.04 SB: 0.05

SE : <0.08 SI: 12.6

SN: <0.02

SR: 0.921 TI: <0.003

TL : <0.1 V : <0.003 ZN : 0.11

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: S-80 METALS ETSRC ID: 5120534

Elm: Result
AG: <0.003
AL: 0.05
AS: <0.06
B: 0.06
BA: 0.238
BE: <0.0003
BI: <0.06
CA: 132.
CD: <0.003
CO: <0.006
CR: <0.02
CU: 0.019
FE: 0.11

K : 1.
LI : 0.015
MG : 36.7
MN : 0.030
MO : <0.007
NA : 82.8
NI : <0.02
P : 0.4</pre>

PB: <0.04 SB: <0.04 SE: <0.08 SI: 9.91 SN: <0.02 SR: 0.389 TI: <0.002 TL: 0.1 V: 0.004 ZN: 0.031

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL

Units: MCG/ML

Batch #: B-5120530

Customer ID: D-81 METALS ETSRC ID: 5120535

Elm: Result
AG: <0.003
AL: 0.086
AS: <0.06
B: 0.18
BA: 0.340

BE : <0.0003 BI : <0.06 CA : 180.

CD : <0.003 CO : <0.006

CR : <0.02 CU : 0.023

FE: 0.14

K : 1.5
LI : 0.028

MG: 38.0 MN: 0.676

MO: 0.02

NA: 32.9 NI: <0.02

NI: <0.02 P: <0.2

PB : <0.04

SB : <0.04

SE : <0.08

SI: 8.84

SN : <0.02 SR : 0.455

TI: <0.003

TL: 0.1

V : <0.003 ZN : 0.087

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: S-82 METALS ETSRC ID: 5120536

Elm : Result
AG : <0.003
AL : <0.02
AS : <0.06
B : 1.3
BA : 0.159
BE : <0.0003
BI : <0.06
CA : 239.
CD : <0.003
CO : 0.01
CR : <0.02

CU: 0.040 FE: 0.083

K : 16.
LI : 0.042

MG: 59.6 MN: 1.75

MO : <0.007

NA : 137. NI : 0.060

P : 0.3

PB : <0.04 SB : <0.05

SB : <0.05 SE : <0.08

SI: 12.5

SN : <0.02 SR : 0.805

TI: <0.003

TL: <0.1 V: 0.003

ZN: 0.099

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: D-83 METALS ETSRC ID: 5120537

Elm : Result
AG : <0.003
AL : <0.02
AS : <0.06
B : 0.92
BA : 1.15
BE : <0.0003
BI : <0.06

CA: 158. CD: <0.003 CO: <0.006 CR: <0.02 CU: <0.005

FE: 0.386 K: 13. LI: 0.033 MG: 47.0 MN: 0.419 MO: <0.007 NA: 175. NI: 0.02

PB : <0.04 SB : <0.04 SE : <0.08 SI : 14.1 SN : <0.03

: <0.2

P

SR: 0.714 TI: <0.003 TL: <0.1 V: <0.003 ZN: 0.038

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: S-84 METALS ETSRC ID: 5120538

Elm : Result
AG : <0.003
AL : 0.52
AS : <0.06
B : 0.1
BA : 0.448
BE : <0.0003
BI : <0.06
CA : 191.
CD : <0.003
CO : 0.022
CR : <0.02

CU: 0.007 FE: 31.5 K: <0.4

LI : 0.022 MG : 49.2

MN : 3.68 MO : <0.01

NA: 29.1 NI: <0.02

P : <0.2 PB : <0.04

SB : 0.05 SE : <0.09

SI : 18.5 SN : <0.02

SR: 0.494 TI: 0.007

TL: <0.1

V : 0.003 ZN : 0.051

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: D-85 METALS ETSRC ID: 5120539

Elm : Result
AG : 0.003
AL : <0.02
AS : <0.06
B : 0.23
BA : 0.874
BE : <0.0003
BI : <0.06
CA : 243.
CD : 0.003
CO : 0.01
CR : <0.02

CU : 0.006 FE : 14.3 K : <0.4 LI : 0.030

MG: 75.9 MN: 1.87 MO: <0.008

NA: 61.7 NI: <0.02

P : 0.2 PB : <0.04

SB: 0.06 SE: <0.09

SI: 15.0 SN: <0.02

SR: 0.522

TI : <0.003 TL : 0.1 V : 0.004

ZN: 0.036

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: D-87 METALS ETSRC ID: 5120540

Elm : Result AG : <0.003 AL: <0.02 AS : <0.06 B: 0.46 BA: 0.702 BE : <0.0003 BI : <0.06 CA: 273. CD : <0.003 CO: <0.006 CR : <0.02 CU: <0.005 FE: 7.67 K : <0.4 LI: 0.034 MG: 70.9 MN: 1.19

MO: <0.008 NA: 104.

NI : <0.02 P : <0.2

PB : <0.04 SB : <0.05

SE : <0.08

SI : 15.2 SN : <0.03

SR: 0.756

TI : <0.003 TL : <0.1 V : <0.003

ZN : 0.018

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

remains and the contraction of the artist metallicities are including in the contraction of the

Batch #: B-5120530

Customer ID: S-88 METALS ETSRC ID: 5120541

Elm : Result
AG : <0.003
AL : 0.25
AS : <0.06
B : 0.09
BA : 0.199
BE : <0.0003
BI : <0.06

CA: 247. CD: <0.003 CO: 0.01

CR : <0.02 CU : <0.005 FE : 2.28

K : <0.4 LI : 0.031

MG: 56.0 MN: 2.36

MO : <0.008

NA : 10.1 NI : <0.02

P: 0.2

PB : <0.04 SB : 0.05

SE: <0.08

SI: 14.4

SN : <0.02 SR : 0.915

TI: 0.004

TL : <0.1

V : 0.003 ZN : 0.051

ICP Scan - Sample Analysis Report
Project: BURNS AND MCDONNELL Units: MCG/MI Units: MCG/ML

Continue management (1996) in the continue of

Batch #: B-5120530

Customer ID: D-89 METALS ETSRC ID: 5120542

Elm : Result AG: <0.003 AL: 0.05 AS : <0.06 B : 0.06 BA: 0.191 BE: <0.0003 BI : <0.06 CA: 129. CD : <0.003 CO: <0.006 CR : <0.02 CU: 0.033 FE: 0.15 K : <0.4 LI: 0.021 MG: 50.9 MN : 0.351MO: <0.007 NA: 10.9 NI : <0.02 P : <0.2 PB : <0.04

SB: <0.04 SE: <0.08 SI: 10.7 SN : <0.02 SR: 0.459

TI : <0.002 TL : <0.1 V : <0.003

ZN: 0.048

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL

Units: MCG/ML

Batch #: B-5120530

e des montes en esta como en conjunto de despreta en que el en compresa do desenvolvo. El travallo en el esta e

Customer ID: D-90 METALS ETSRC ID: 5120543

Elm : Result
AG : <0.003
AL : 0.05
AS : <0.06
B : 0.1
BA : 0.174
BE : <0.0003
BI : <0.06
CA : 70.0

CD: <0.003 CO: <0.006 CR: <0.02 CU: <0.005 FE: 0.034 K: 5.6

LI: 0.025 MG: 34.6 MN: 0.14

MO: 0.02 NA: 45.6

NI : <0.02 P : <0.2

PB : <0.04 SB : <0.04

SE : <0.08

SI : 11.1 SN : <0.02

SR : 0.671 TI : <0.002

TL: <0.1 V: <0.003 ZN: <0.002

ICP Scan - Sample Analysis Report
Project: BURNS AND MCDONNELL Units: MCG/MI Units: MCG/ML

Batch #: B-5120530

Customer ID: D-91 METALS ETSRC ID: 5120544

Elm : Result AG: <0.003 AL: 0.03 AS : <0.06 B : 0.07 BA: 0.446 BE : <0.0003 BI : <0.06 CA: 162. CD : <0.003 CO: <0.006 CR : <0.02 CU: 0.008 FE: 4.04 K : <0.4 LI: 0.026 MG: 56.4 MN: 1.09 MO : <0.008 NA: 44.5

P : <0.2 PB : <0.04

NI : <0.02

SB : <0.05 SE : <0.08

SI : 15.7 SN : <0.02

SR: 0.826 TI : <0.003

TL : <0.1 V : <0.003

ZN: 0.044

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

and the second section of

Customer ID: D-92 METALS ETSRC ID: 5120545

Elm : Result
AG : <0.003
AL : 0.20
AS : <0.06
B : 0.21
BA : 0.614
BE : <0.0003
BI : <0.06
CA : 287.

CD : <0.003 CO : <0.006 CR : <0.02

CU: 0.008 FE: 6.28

K : 1.8 LI : 0.033

MG: 77.5 MN: 1.63

MO : <0.008

NA: 153. NI: 0.02

P: 0.3 PB: <0.04

PB : <0.04 SB : 0.07

SE : <0.08

SI : 11.1

SN : <0.03

SR: 1.12 TI: 0.20

TL : <0.1

V : <0.003 ZN : 0.029

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: D-93 METALS ETSRC ID: 5120546

Elm : Result AG: 0.004 AL: 0.03 AS : <0.06 B : 0.1 BA: 1.06 BE : <0.0003 BI : <0.06 CA: 246. CD : <0.003 CO: <0.006 CR : <0.02 CU: 0.024 FE: 2.63 K : 1. LI: 0.034 MG: 61.4 MN: 0.336 MO: <0.008 NA: 64.3

P : 0.2 PB : <0.04 SB : 0.07 SE : <0.08 SI : 14.5 SN : <0.03 SR : 0.861

NI : <0.02

TI: <0.003 TL: <0.1 V: <0.003

ZN: 0.020

ICP Scan - Sample Analysis Report

Project: BURNS AND MCDONNELL Units: MCG/ML

Batch #: B-5120530

Customer ID: D-94 METALS ETSRC ID: 5120547

Elm : Result
AG : <0.003
AL : <0.02
AS : <0.06
B : 0.06
BA : 0.666

BA : 0.666 BE : <0.0003 BI : <0.06

CA: 110.

CD : <0.003 CO : <0.006

CR : <0.02

CU: 0.01 FE: 0.12

K : 3.1
LI : 0.021

MG: 24.6

MN : 0.20 MO : 0.01

NA: 68.6

NI : <0.02

P : <0.2

PB : <0.04

SB : <0.04 SE : <0.08

SI : 10.6

SN : <0.02

SR: 0.588

TI: 0.005

TL : <0.1

V : <0.003 ZN : 0.14

ICP Scan - Sample Analysis Report
Project: BURNS AND MCDONNELL Units: MCG/ML Units: MCG/ML

Batch #: B-5120530

Customer ID: D-95 METALS ETSRC ID: 5120548

Elm : Result AG: <0.003 AL: 0.04 AS: <0.06 B : 0.1 BA: 0.183 BE : <0.0003 BI : <0.06 CA: 67.9 CD : <0.003 co: <0.006 CR : <0.02 CU: 0.01 FE: 0.16 K : 1.7 LI: 0.013

MN: 0.066 MO : 0.01 NA: 40.9 NI : <0.02 P: 0.3

MG: 11.2

PB : <0.04 SB : <0.04 SE : <0.08 SI: 12.1 SN : <0.02

SR: 0.325 TI: <0.003 TL : <0.1 V : <0.003 ZN: 0.035

RESULT SUMMARY SHEETS

BASE/NEUTRAL PRIORITY POLLUTANTS

Environmental Trace Substances Research Center Base Neutral Result Sheet Detection Limit

Sample Source: Submitter ID#:

ETSRC ID#:

Data File#:

Sample Matrix: Method: U.S.E.P.A. #625

Uate Received:

Date Analyzed:

Conc. Units: mcg/L

Analyst:

	Compound	Quantity m/e	Scan #	Anna	Conc	Comm Conc
1	Bis[2-Chloroethyl]ether	93	Scan #	Area	Conc	Corr Conc 1.0
	1,3-Dichlorobenzene	146				1.0
3.	1,4-Dichlorobenzene	146				1.0
4.	1,2-Dichlorobenzene	146				1.0
5.	Bis[2-Chlorophropyl]ether	45				5.0
6.	Hexachloroe thane	117				1.0
7.	Nitrobenzene	77				1.0
8.	Isophorone	82				2.0
9.	Bis[2-Chloroethoxy]methane	93				3.0
10.	Trichlorobenzene	180				1.0
11.	Naphthalene	128				1.0
12.	Hexachlorobutadiene	225				1.6
13.	Hexachlorocyclopentadiene	237				1.0
14.	2-Chloronaphthalene	162				1.0
15.	Acenaphthylene	152				1.0
17.	Dimethylphthalate	163				1.0
18.	Acenaphthene	154				1.0
19.	2,4-Dinitrotoluene	165				1.0
20.	Fluorene	166				1.0
21.	Dietnylphthalate	149				1.0
22.	N-Nitrosodiphenylamine	169				2.0
23.	4-Bromophenylphentyl ether	248				1.0

		Quanti ty				
	Compound	nı/e_	Scan #	Area	Conc	Corr Conc
24.	Hexachlorobenzene	284				1.0
25.	Phenanthrene	178				1.0
26.	Anthracene	178				1.0
27.	Di-n-Butylphthalate	149				1.0
28.	Fluoranthene	202				1.0
	Pyrene	202				1.0
	Butylbenzylphthalate	149				1.0
	Benzlajanthracene	228				1.0
32.	3,3'-Dichlorobenzidine	252				2.0
33.	Chrysene	228				1.0
34.	Bis[2-ethylhexyl]phthalate	149				1.0
	Di-n-Octylphthalate	149				1.0
36.	Benzo[b]Fluoranthene	252				1.0
	Benzo[k]Fluoranthene	252				1.0
38.	Benzo[a]Pyrene	252				1.0
	1,2-Diphenylhydrazine	7 7				5.0
	Benzidine	184				10.0
	4-Chlorophenyl phenyl ether	204				2.0
	N-Nitroso-n-propylamine	70				10.0

Environmental Trace Substances Research Center Base Neutral Result Sheet

Sample Source: Burns & McDonnell

Submitter ID#: S-510R

ETSRC ID#: 5120513 Data File#: BN5120513

Sample Matrix: Water Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 20, 1986 Conc. Units: mcg/L

Analyst: Carl Orazio

	Compound	Quantity m/e_	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93	 		- -	<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mol< td=""></mol<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

	Quantity		_		
Compound	<u>m/e</u>	<u>Scan #</u>	Area	Conc	Corr Conc
24. Hexachlorobenzene	284				<mdl< td=""></mdl<>
25. Phenanthrene	178				<mdl< td=""></mdl<>
26. Anthracene	178				<mdl.< td=""></mdl.<>
27. Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28. Fluoranthene	202				<mol.< td=""></mol.<>
29. Pyrene	202				<mdl< td=""></mdl<>
30. Butylbenzylphthalate	149				<mdl< td=""></mdl<>
Benz[a]anthracene	228				<mdl< td=""></mdl<>
32. 3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33. Chrysene	228				<mdl< td=""></mdl<>
34. Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35. Di-n-Octylphthalate	149				<mul< td=""></mul<>
36. Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38. Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39. 1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40. Benzidine	184				<mdl< td=""></mdl<>
41. 4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42. N-Nitroso-n-propylamine	70				

SURROGATE RESULTS

	Quantity				
Compound	m/e	Scan #	<u>Area</u>	Conc	_Conc_
1. Anthracene D-10	188	2422	189204	101.5	100.0
2. Chrysene D-12	240	3380	125099	149.1	100.0

3.

4.

Tentatively Identified Compounds

		NR2	Base		
Compound	Scan #	FIT	m/e	Area	Est Conc
1. Trimethyl Cyclohexane-1-One	1079	No Match	123		

2.

3.

4.

5.

6.

7.

8.

9.

10.

Environmental Trace Substances Research Center Base Neutral Result Sheet

Sample Source: Burns & McDonnell

Submitter ID#: S-510R

ETSRC ID#: 5120513DR Data File#: BN0513DR

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 20, 1986 Conc. Units: mcg/L

Analyst: Carl Orazio

Compound	Quantity m/e	Scan #	Area	Conc	Corr Conc
	93				<mdl< td=""></mdl<>
- · ·	146				<mdl< td=""></mdl<>
1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
Hexachloroethane	117				<mdl< td=""></mdl<>
Nitrobenzene	77				<mdl< td=""></mdl<>
Isophorone	82				<mdl< td=""></mdl<>
Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
Trichloropenzene	180				<mdl< td=""></mdl<>
Naphtha lene	128				<mdl< td=""></mdl<>
Hexachlorobutadiene	225				<mdl< td=""></mdl<>
Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
2-Chloronaphthalene	162				<mdl< td=""></mdl<>
Acenaphthylene	152				<mdl< td=""></mdl<>
Dimethylphthalate	163				<mdl< td=""></mdl<>
Acenaphthene	154				<mdl< td=""></mdl<>
2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
Fluorene	166				<mdl< td=""></mdl<>
Diethylphthalate	149				<mdl< td=""></mdl<>
N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
4-Bromophenylphentyl ether	248				KMDL
	Compound Bis[2-Chloroethyl]ether 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene Bis[2-Chlorophropyl]ether Hexachloroethane Nitrobenzene Isophorone Bis[2-Chloroethoxy]methane Trichlorobenzene Naphthalene Hexachlorocyclopentadiene 2-Chloronaphthalene Acenaphthylene Dimethylphthalate Acenaphthene 2,4-Dinitrotoluene Fluorene Diethylphthalate N-Nitrodiphenylamine 4-Bromophenylphentyl ether	Compoundm/eBis[2-Chloroethyl]ether931,3-Dichlorobenzene1461,4-Dichlorobenzene1461,2-Dichlorobenzene146Bis[2-Chlorophropyl]ether45Hexachloroethane117Nitrobenzene77Isophorone82Bis[2-Chloroethoxy]methane93Trichlorobenzene180Naphthalene128Hexachlorobutadiene225Hexachlorocyclopentadiene2372-Chloronaphthalene162Acenaphthylene152Dimethylphthalate163Acenaphthene1542,4-Dinitrotoluene165Fluorene166Diethylphthalate149N-Nitrodiphenylamine169	Compound m/e Scan # Bis[2-Chloroethyl]ether 93 1,3-Dichlorobenzene 146 1,4-Dichlorobenzene 146 1,2-Dichlorobenzene 146 Bis[2-Chlorophropyl]ether 45 Hexachloroethane 117 Nitrobenzene 77 Isophorone 82 Bis[2-Chloroethoxy]methane 93 Trichlorobenzene 180 Naphthalene 128 Hexachlorobutadiene 225 Hexachlorocyclopentadiene 237 2-Chloronaphthalene 162 Acenaphthylene 152 Dimethylphthalate 163 Acenaphthene 154 2,4-Dinitrotoluene 165 Fluorene 166 Diethylphthalate 149 N-Nitrodiphenylamine 169	Compound m/e Scan # Area Bis[2-Chloroethyl]ether 93 1,3-Dichlorobenzene 146 1,4-Dichlorobenzene 146 1,2-Dichlorobenzene 146 Bis[2-Chlorophropyl]ether 45 45 Hexachloroethane 117 Nitrobenzene 77 Isophorone 82 82 83 Bis[2-Chloroethoxy]methane 93 74 74 Isophorone 180 74 74 Naphthalene 128 74 74 Hexachlorobutadiene 225 74 74 Hexachlorocyclopentadiene 237 74 74 2-Chloronaphthalene 162 74 74 Acenaphthylene 152 74 74 Dimethylphthalate 163 74 74 Acenaphthene 154 74 74 10 166 166 166 10 166 166 166 10 169 169 169 </td <td>Compound m/e Scan # Area Conc Bis[2-Chloroethyl]ether 93 1,3-Dichlorobenzene 146 1,4-Dichlorobenzene 146 1,2-Dichlorobenzene 146 Bis[2-Chlorophropyl]ether 45 45 Hexachloroethane 117 77 Isophorone 82 82 Bis[2-Chloroethoxy]methane 93 77 Irichlorobenzene 180 77 Naphthalene 128 77 Hexachlorobutadiene 225 77 Hexachlorocyclopentadiene 237 72 2-Chloronaphthalene 162 77 Acenaphthylene 152 77 Dimethylphthalate 163 77 Acenaphthene 154 77 2,4-Dinitrotoluene 165 77 Fluorene 166 77 Diethylphthalate 149 N-Nitrodiphenylamine 169</td>	Compound m/e Scan # Area Conc Bis[2-Chloroethyl]ether 93 1,3-Dichlorobenzene 146 1,4-Dichlorobenzene 146 1,2-Dichlorobenzene 146 Bis[2-Chlorophropyl]ether 45 45 Hexachloroethane 117 77 Isophorone 82 82 Bis[2-Chloroethoxy]methane 93 77 Irichlorobenzene 180 77 Naphthalene 128 77 Hexachlorobutadiene 225 77 Hexachlorocyclopentadiene 237 72 2-Chloronaphthalene 162 77 Acenaphthylene 152 77 Dimethylphthalate 163 77 Acenaphthene 154 77 2,4-Dinitrotoluene 165 77 Fluorene 166 77 Diethylphthalate 149 N-Nitrodiphenylamine 169

		Quantity				
	Compound	<u>m/e</u>	Scan #	Area	<u>Conc</u>	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mul< td=""></mul<>
42.	N-Nitroso-n-propylamine	70				

	Quantity			Det	Spiked
Compound	_m/e	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2424	141779	76.0	100.0
2. Chrysene D-12	240	3384	105002	125.0	100.0
3.					

Tentatively Identified Compounds

	Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.	Trimethyl Gyclohexen-1-one	1083	No Match	123		
2.						
3.						
4.						
5.						
6.						
7.						
8.						
9.						
10.						

Sample Source: Burns & McDonnell

Submitter ID#: T-590R

ETSRC ID#: 5120514 Data File#: BN5120514

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 20, 1986 Conc. Units: mcg/L

Analyst: Carl Orazio

Sample contained traces of aliphatic hydrocarbons. Possibly due to diesel or similar contaminant.

	Compound	Quantity _m/e	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< th=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< th=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< th=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< th=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< th=""></mdl<>
6.	Hexachloroethane	117				<mdl< th=""></mdl<>
7.	Nitrobenzene	77				<mdl< th=""></mdl<>
8.	Isophorone	82				<mdl< th=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< th=""></mdl<>
10.	Trichlorobenzene	180				<mdl< th=""></mdl<>
11.	Naphthalene	128				<mdl< th=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< th=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< th=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< th=""></mdl<>
15.	Acenaphthylene	152				<mdl< th=""></mdl<>
17.	Dimethylphthalate	163				<mdl< th=""></mdl<>
18.	Acenaphthene	154				<mdl< th=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< th=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>

		Quantity				
	Compound	m/e_	Scan #	Area	Conc	Corr Conc
21.	Dietnylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mul< td=""></mul<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mul< td=""></mul<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149	3463			*
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mul< td=""></mul<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mul< td=""></mul<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

^{*}Present but < quantitation limit.

	Quantity			Det	Spiked
Compound	_m/e_	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2427	160,353	86.0	100.0
2. Chrysene D-12	240	3382	90,836	108.3	100.0

3.

4.

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1. 1,1'-Oxy Bis (2 Ethoxy) Ethane	1031	946	59		
2. Pentylenetetrazole	2053	973	55		
	1630	No Match			
3. Aliphatic Hydrocarbon	3509	No Match	57		
4. Aliphatic Hydrocarbon	3626	No Match	57		
_					

5.

6.

7.

8.

9.

Sample Source: Burns & McDonnell

Submitter ID#: S-800R

ETSRC ID#: 5120515 Data File#: BN5120515

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 20, 1986 Conc. Units: mcg/L

Analyst: Carl Orazio

Sample contains traces of aliphatic hydrocarbons from diesel or similar contaminants.

	Compound	Quantity m/e	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<md1< td=""></md1<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				⊲งก่า
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>

		Quantity				
	Compound	m/e	Scan #	Area	Conc	Corr Conc
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mul< td=""></mul<>
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<#DL
33.	Chrysene	228	3463			<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mul< td=""></mul<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				viDL</td

.

1

..

.

		Quantity			Det	Spiked
	Compound	_m/e_	Scan #	Area	Conc	Conc
1.	Anthracene D-10	188	2426	142,258	76.3	100.0
2.	Chrysene D-12	240	3384	100,922	120.3	100.0

3.

4.

8. 9.

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
 Aliphatic Hydrocarbon 	3150				
2. Aliphatic Hydrocarbon	3626				
3. Trimethyl Cyclohexane-1-One	1082	No Match			
4.					
5.					
6.					
7.					

		Quantity			Det	Spiked
	Compound	_m/e	Scan #	<u>Area</u>	Conc	Conc
1.	Anthracene D-10	188	2419	116205	106.3	100.0
2.	Chrysene D-12	240	3374	84859	110.2	100.0

3.

4.

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1. Trimethyl Benzene	816	986	105		
2. Triethyl Phosphate	1129	938			
3. Ethyl Benzyl Alcohol	1044				
4. 2 Naphthylamine	2006				
5. Sulfur	2828				
6.					
7					

7.

8.

9.

		Quantity				
	Compound	<u>ភ/e</u>	Scan #	Area	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mul.< td=""></mul.<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149	3453	2940	1.84	1.74
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<ridl< td=""></ridl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mul< td=""></mul<>
42.	N-Nitroso-n-propylamine	70				<mul< td=""></mul<>

.

		Quantity				
	Compound	_in/e	Scan #	Area	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mul< td=""></mul<>
26.	Anthracene	178				<mul< td=""></mul<>
27.	Di-n-Butylphthalate	149				<ŀŀŪL
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mûl< td=""></mûl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mul< td=""></mul<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149			1.1	0.96
35.	Di-n-Octylphthalate	149				<#IDL
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<midl< td=""></midl<>
39.	1,2-Diphenylhydrazine	77				<mul< td=""></mul<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

.

Conc. Units: mcg/L

Sample Source: Burns & McDonnell

Submitter ID#: D-85 OR

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 21, 1986

		Quantity				
	Compound	m/e	Scan #	<u>Area</u>	Conc	Corr Conc
1.	Bis[2-Cnloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mul< td=""></mul<>
5.	Bis[2-Chlorophropyl]ether	45				<mul< td=""></mul<>
ő.	Hexachloroe thane	117				<mdl< td=""></mdl<>
7.	nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				AGM>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<múl< td=""></múl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dime thy 1 ph thalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene ·	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
2Ù.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<#UL
22.	N-witrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<hül< td=""></hül<>

		Quantity				
	Compound	m/e	Scan #	Area	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<nül< td=""></nül<>
28.	Fluoranthene	202	•			<mdl< td=""></mdl<>
29.	Pyrene	202				₹IDL
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<hul< td=""></hul<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<idl>HDL</idl>
34.	Bis[2-ethylhexyl]phthalate	149	3456	94122	129.5	115.2
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
3ö.	Benzo[b]Fluoranthene	252				<mul< td=""></mul<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylnydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mul< td=""></mul<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

...

Sample Source: Burns & McDonnell

Submitter ID#: D- 900R

ETSRC ID#: 5120524 Data File#: BN5120524

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 22, 1985 Conc. Units: mcg/L

		Quantity		_	_	
	Compound	_m/e_	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				≺MDL
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mul< td=""></mul<>
7.	Ni trobenzene	77				<mul< td=""></mul<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	vime thylphthalate	163				₫ DL
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mul< td=""></mul<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

Compound	Quantity <u>m/e</u>	Scan #	Area	Det <u>Conc</u>	Spiked Conc
1. Anthracene D-10	188	2421	120,607	100.5	100.0
2. Chrysene D-12	240	3379	90,290	92.5	100.0
3. Phenol D-5	99	783	12,775		

Tentatively Identified Compounds

7. 8. 9.

Compound	Scan #	NBS LIB FIT	Base m/e	Area	_Est Conc
1.	1079	No Match	123		
2.					
3.					
4.					
5.					
6.					

	Quantity	. "	0	C	Comm Come
Compound	m/e	Scan #	Area	Conc	Corr Conc
24. Hexachlorobenzene	284				<mdl< td=""></mdl<>
25. Phenanthrene	178				<mdl< td=""></mdl<>
26. Anthracene	178			-	<mdl< td=""></mdl<>
27. Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28. Fluoranthene	202				<mdl< td=""></mdl<>
29. Pyrene	202				<mdl< td=""></mdl<>
30. Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31. Benz[a]anthracene	228	•			<mdl< td=""></mdl<>
32. 3,3'-Dichlorobenzidine	252				< M DL
33. Chrysene	228				<mdl< td=""></mdl<>
34. Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35. Di-n-Octylphthalate	149				KMDL
36. Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37. Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38. Benzola]Pyrene	252				<mdl< td=""></mdl<>
39. 1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40. Benzidine	184				<mdl< td=""></mdl<>
41. 4-Chlorophenyl phenyl etner	204				<mdl< td=""></mdl<>
42. N-Nitroso-n-propylamine	70				

Sample Source: Burns & McDonnell

Submitter ID#: D-890R

ETSRC ID#: 5120523 Data File#: BN5120523

Sample Matrix: Water
Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 20, 1986 Conc. Units: mcg/L

	Compound	Quantity m/e	Scan#	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< th=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< th=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< th=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl.< th=""></mdl.<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< th=""></mdl<>
6.	Hexachloroethane	117				<mdl< th=""></mdl<>
7.	Nitrobenzene	77				<mdl< th=""></mdl<>
8.	Isophorone	82				<mdl< th=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< th=""></mdl<>
10.	Trichlorobenzene	180				<mdl< th=""></mdl<>
11.	Naphthalene	128				<mdl< th=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< th=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< th=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< th=""></mdl<>
15.	Acenaphthylene	152				<mdl< th=""></mdl<>
17.	Dimethylphthalate	163				<mdl< th=""></mdl<>
18.	Acenaphthene	154				<mdl< th=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< th=""></mdl<>
20.	Fluorene	166				<mdl< th=""></mdl<>
21.	Diethylphthalate	149				<mdl< th=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< th=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

	Quantity			Det	Spikea
Compound	_m/e	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2425	101,792	84.8	100.0
2. Chrysene D-12	240	3381	89,410	91.6	100.0
3.					
4.					

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

	C	Quantity	San #	6.0.00	<i>(</i>)	Carra Carra
	Compound	m/e	Scan #	Area	Conc	Corr Conc
	Hexachlorobenzene	284				<mul< td=""></mul<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149	2684	599	0.31	0.35
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mul< td=""></mul<>
30.	Butylbenzylphthalate	149				<mul< td=""></mul<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mul< td=""></mul<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149	36 83	2247	0.94	0.97
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<1DL
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<ndl< td=""></ndl<>
41.	4-Chlorophenyl phenyl ether	204				<mül< td=""></mül<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

Sample Source: Burns & McDonnell

Submitter ID#: S-88 OR

ETSRC ID#: 5120522 Data File#: BN5120522

Sample Matrix: Water

Method: U.S.E.P.A. #625 Date Received: January

Date Analyzed: January 23, 1986 Conc. Units: mcg/L

		Quantity		_	_	
	Compound	_m/e_	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichloropenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<indl< td=""></indl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroe thane	117				<mul< td=""></mul<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				JG14>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphtnylene	152	•			<mdl< td=""></mdl<>
17.	Dimetnylphthalate	163				<mul< td=""></mul<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166		,		<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mul< td=""></mul<>
23.	4-Bromophenylphentyl ether	248				MUL

•		Quantity				
	Compound	m/e	<u>Scan #</u>	<u>Area</u>	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				AGM>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mul< td=""></mul<>
33.	Chrysene	22 8				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				

.

. :

Sample Source: Burns & McDonnell

Submitter ID#: D - 91 OR

ETSRC ID#: 5120525D Data File#: BN5120525D

Sample Matrix: Water Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 22, 1986 Conc. Units: mcg/L

		Quantity	6 "		0	0
	Compound	m/e	Scan #	<u>Area</u>	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	l,3-Dichlorobenzene	146				MDL
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
. 5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				MDL
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				KMDL
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<md l<="" td=""></md>

	Quantity			Det	Spiked
Compound	<u>m/e</u>	Scan #	<u>Area</u>	Conc	Conc
1. Anthracene D-10	188	2388	29701	22.4	20.0
2. Chrysene D-12	240	3336	123162	15.9	20.0
3.					
4.					

Tentatively Identified Compounds

2. 3. 4. 5. 6. 7. 8. 9.

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.					
2.					
3.					
Λ					

		Quantity				
	Compound	m/e	Scan #	Area	<u>Conc</u>	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
3 9 .	l,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				

Sample Source: Burns & McDonnell

Submitter ID#: D-91 OR

ETSRC ID#: 5120525 Data File#: 512052BN

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: March 4, 1986 Conc. Units: mcg/L

		Quantity				
	Compound	m/e	Scan #	<u>Area</u>	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93			•	<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	1 17				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
	Acenaphthene 2,4-Dinitrotoluene	154 165				<mdl <mdl< td=""></mdl<></mdl
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Dietnylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylpnentyl ether	248				KMDL

	Quanti ty				Det	Spiked
	Compound	m/e	Scan #	Area	Conc	Conc
1.	Anthracene D-10	188	2416	147,856	122.0	100.0
2.	Chrysene D-12	240	3376	141,120	137.0	100.0

3.

4.

Tentatively Identified Compounds

Compouna	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1. Fatty Acid Octy Ester	2057	966	119		
2.	3271	973	129		
3					

5.

7.

8.

9.

	Quantity				
Compound	<u>m/e</u>	Scan #	Area	Conc	Corr Conc
22. N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23. 4-Bromophenylphentyl ether	248				<mul< td=""></mul<>
24. Hexachlorobenzene	284				<mdl< td=""></mdl<>
25. Phenanthrene	178				<mdl< td=""></mdl<>
26. Anthracene	178				<mdl< td=""></mdl<>
27. Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28. Fluoranthene	202				<mdl< td=""></mdl<>
29. Pyrene	· 202				<mdl< td=""></mdl<>
30. Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31. Benz[a]anthracene	228				<mdl< td=""></mdl<>
32. 3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33. Chrysene	228				<f1d l<="" td=""></f1d>
<pre>34. Bis[2-ethylhexyl]phthalate</pre>	149	34 4 0	8084	6.6	7.4
35. Di-n-Octylphthalate	149	3679	15452	7.8	6.4
36. Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37. Benzo[k]Fluoranthene	252				<mul< td=""></mul<>
38. Benzo[a]Pyrene	252				<mul< td=""></mul<>
39. 1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40. Benzidine	184				<mdl< td=""></mdl<>
41. 4-Chlorophenyl phenyl ether	204				<ndl< td=""></ndl<>
42. N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

Sample Source: Burns & McDonnell

Submitter ID#: D-930R

ETSRC IU#: 5120527 Data File#: BN512527

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 23, 1986 Conc. Units: mcy/L

Analyst: Carl Orazio

Contaminated with phthlate esters.

	Company	Quantity	Scan #	Anas	Conc	Conn Conc
	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-bichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mul< td=""></mul<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<4DL
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>

		Quantity			Det	Spiked
	Compound	_m/e	Scan #	Area	Conc	Conc
1.	Anthracene D-10	188	3415	134,442	115.3	100.0
2.	Chrysene D-12	240	a3372	121,484	118.6	100.0

3.

4.

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
 Ethane, 1,1'-0xy Bis[2]Ethoxy 	1029	924	59		
2. Trimethyl Cyclohexan-1-One	1078	No Match	123		
3. Triethy Phosphate	1126	936	99		
4. Hexane Dioic Acid, Dioctylester	3264	966	129		

5.

б.

7.

8.

9.

	0	Quantity	500m #	Amos	Conc	Corr Conc
	Compound	m/e	Scan #	Area	Conc	
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149	2675	1321	0.81	0.70
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149	3460	671,459	549.4	477.4
35.	Di-n-Octylphthalate	149	3672	5971	3.0	2.6
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

Sample Source: Burns & McDonnell

Submitter ID#: D-92 OR

ETSRC ID#: 5120526 Data File#. BN5120526

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 23, 1986 Conc. Units: mcg/L

	Compound	Quantity m/e	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Ni trobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mul< td=""></mul<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mûl< td=""></mûl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-vinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mûl< td=""></mûl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<hdl< td=""></hdl<>

	Quantity			Det	Spiked
Compound	m/e_	Scan #	<u>Area</u>	Conc	Conc
1. Anthracene D-10	188	2414	120131	99.0	100.0
2. Chrysene D-12	240	3373	110619	108.0	100.0
2					

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1. Trimethyl Cyclohexene-l-one	1074	No Match	123		
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

		Quantity				
	Compound	<u>m/e</u>	Scan #	<u>Area</u>	<u>Conc</u>	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				AGMS
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	2 28				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				

-

Sample Source: Burns & McDonnell

Submitter ID#: D-95 oR

ETSRC ID#: 5120529 Data File#: BN5120529

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 20, 1986 Conc. Units: mcg/L

	Compound	Quantity m/e	Scan_#	Area	Conc	Corr Conc
٦.	Compound	93	Jean #	Area	COTIC	<mdl< td=""></mdl<>
	Bis[2-Chloroethyl]ether					
	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				KMDL
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphtha lene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

		Quantity			Det	Spiked
	Compound	m/e	Scan #	<u>Area</u>	Conc	Conc
1.	Anthracene D-10	188	2415	115742	99.3	100.0
2.	Chrysene D-12	240	3372	104983	102.5	100.0

3.

4.

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
 Trimethyl Cyclohexane-1-One 	1080	No Match	123		
2. Hexane Dioc Acid Dioctyl Ester	3256	919			

3.

4.

5.

٥.

7.

8.

9. 10.

		Quantity				
	Compound	m/e	Scan #	Area	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149	3450	4515	3.7	3.7
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluorantheme	25 2				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

Sample Source: Burns & McDonnell

Submitter ID#: D-94 OR

ETSRC ID#: 5120528 Data File#: 8N5120528

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received. December 17, 1985

Date Analyzed: January 23, 1986 Conc. Units: mcg/L

	Compound	Quantity m/e	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Cnloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mul< td=""></mul<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<ndl< td=""></ndl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<iddl< td=""></iddl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	1ö5				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<4DL
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

Quanti ty					Det	Spiked	
	Compound	_m/e_	Scan #	Area	Conc	Conc	
1.	Anthracene D-10	188	2415	103659	88.9	100.0	
2.	Chrysene D-12	240	3371	124926	122.0	100.0	

3.

4.

7. 8. 9.

Tentatively Identified Compounds

	Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.	<pre>1,1' Ethane Bis Oxy(Ethoxy) [2]Ethoxy</pre>	1032	No Match	59		
2.	Trimethyl Cyclohexe-1-One	1081	No Match	123		
3.	Tetraoxydodecane	1945	969	59		
4.						
5.						
6.						

Sample Source: Burns & McDonnell

Submitter Iu#:

Data File#: BN6010117 ETSRC IU#: 6010117

Sample Matrix: Water Method: U.S.E.P.A. #625 Date Received: January

Date Analyzed: January 23, 1986

Conc. Units: mcg/L

	Compound	Quantity m/e	Scan #	Area	Conc	Corr Conc
1	Bis[2-Chloroethyl]ether	93	<u> </u>			<mdl< td=""></mdl<>
	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
	1,4-Dichlorobenzene	146	861	542	1.0	0.94
	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				∠MDL
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128	1262	1360	0.90	0.86
12.	Hexachlorobutadiene	225				<mul< td=""></mul<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dime thy lph thala te	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149	2080	3545	1.85	1.75
22.	N-Nitrodiphenylamine	169				<mol< td=""></mol<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

	Quantity			Det	Spiked
Compound	m/e	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2416	132398	113.5	100.0
2. Chrysene D-12	240	3373	107540	105.0	100.0
3.					

Tentatively Identified Compounds

4.

<u>Compound</u>	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.		•			

Sample Source: Burns & McDonnell

Submitter ID#:

ETSRC ID#: 5120524S; Spike Sample Data File#: BN5120524S

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 22, 1986 Conc. Units: mcg/L

	Compound	Quantity <u>m/e</u>	Scan	# Area	Conc	Corr Conc	Spk Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< th=""><th></th></mdl<>	
2.	1,3-Dichlorobenzene	146				<mdl< td=""><td></td></mdl<>	
3.	1,4-Dichlorobenzene	146				<mdl< td=""><td></td></mdl<>	
4.	1,2-Dichlorobenzene	146				<mdl< td=""><td></td></mdl<>	
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""><td></td></mdl<>	
6.	Hexachloroethane	117				<mdl< td=""><td></td></mdl<>	
7.	Nitrobenzene	77				<mdl< td=""><td></td></mdl<>	
8.	Isophorone	82				<mdl< td=""><td></td></mdl<>	
9.	ыі si 2-Chloroethoxy]methane	93				<mdl< td=""><td></td></mdl<>	
10.	Trichlorobenzene	180				JGM>	
11.	Naphtnalene	128				<mdl< td=""><td></td></mdl<>	
12.	Hexachlorobutadiene	225				<mdl< td=""><td></td></mdl<>	
13.	Hexachlorocyclopentadiene	237				<mul< td=""><td></td></mul<>	
14.	2-Chloronaphthalene	162				<mdl< td=""><td></td></mdl<>	
15.	Acenaphthylene	152				<mdl< td=""><td></td></mdl<>	
17.	Dimethylphthalate	163				<mdl< td=""><td></td></mdl<>	
18.	Acenaphthene	154				<mdl< td=""><td></td></mdl<>	
19.	2,4-Dinitrotoluene	165				<mul< td=""><td>,</td></mul<>	,
20.	Fluorene	166	2059	11222	17.9	19.2	20.0
21.	Diethylphthalate	149				<mdl< td=""><td></td></mdl<>	
22.	N-Nitrodiphenylamine	169				<mdl< td=""><td></td></mdl<>	

	Quantity	-		Det	Spiked
Compound	_m/e_	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2410	213,353	114.5	100.0
2. Chrysene D-12	240	3370	160,419		100.0
3.					

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.					
2.	•				
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

	Quantity				
Compound	m/e	Scan #	Area	Conc	Corr Conc
Hexachlorobenzene	284				<11DL
Phenanthrene	178		26966	15.8	20.0
Anthracene	178				<mdl< td=""></mdl<>
Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
Fluoranthene	202	2833	38619	22.7	20.0
Pyrene	202				<14DL
Butylbenzylphthalate	149				<mul< td=""></mul<>
Benz[a]anthracene	228				<ndl< td=""></ndl<>
3,3'-Dichlorobenzidine	252				<mul< td=""></mul<>
Chrysene	228		34949	72.4	75.0
Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
Benzo[b]Fluoranthene	252	3752	22655	20.1	20.0
Benzo[k]Fluoranthene	2 52				<mdl< td=""></mdl<>
Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
Benzidine	184				<mūl< td=""></mūl<>
4-Chlorophenyl pnenyl ether	204				<hdl< td=""></hdl<>
N-Nitroso-n-propylamine	70				<mol< td=""></mol<>
	Hexachlorobenzene Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate Benz[a]anthracene 3,3'-Dichlorobenzidine Chrysene Bis[2-ethylhexyl]phthalate Di-n-Octylphthalate Benzo[b]Fluoranthene Benzo[k]Fluoranthene Benzo[a]Pyrene 1,2-Diphenylhydrazine Benzidine 4-Chlorophenyl pnenyl ether	Compoundm/eHexachlorobenzene284Phenanthrene178Anthracene178Di-n-Butylphthalate149Fluoranthene202Pyrene202Butylbenzylphthalate149Benz[a]anthracene2283,3'-Dichlorobenzidine252Chrysene228Bis[2-ethylhexyl]phthalate149Di-n-Octylphthalate149Benzo[b]Fluoranthene252Benzo[k]Fluoranthene252Benzo[a]Pyrene2521,2-Diphenylhydrazine77Benzidine1844-Chlorophenyl pnenyl ether204	Compound m/e Scan # Hexachlorobenzene 284 Phenanthrene 178 Anthracene 178 Di-n-Butylphthalate 149 Fluoranthene 202 2833 Pyrene 202 8 Butylbenzylphthalate 149 9 Benz[a]anthracene 228 228 Bis[2-ethylnexyl]phthalate 149 149 Di-n-Octylphthalate 149 149 Benzo[b]Fluoranthene 252 3752 Benzo[k]Fluoranthene 252 3752 Benzo[a]Pyrene 252 1,2-Diphenylhydrazine 77 Benzidine 184 4-Chlorophenyl pnenyl ether 204	Compound mi/e Scan # Area Hexachlorobenzene 284 26966 Phenanthrene 178 26966 Anthracene 178 26966 Anthracene 178 26966 Anthracene 149 2833 38619 Pyrene 202 2833 38619 Pyrene 202 2833 38619 Pyrene 202 2833 38619 Pyrene 228 33949 Benz[a]anthracene 228 34949 Bis[2-ethylhexyl]phthalate 149 Di-n-Octylphthalate 149 Benzo[b]Fluoranthene 252 3752 22655 Benzo[k]Fluoranthene 252 3752 22655 Benzo[a]Pyrene 252 3752 22655 Benzidine 184 4-Chlorophenyl pnenyl ether 204	New Scan # Area Conc

Sample Source: Burns & McDonnell

Submitter ID#:

ETSRC ID#: 512U5RSPK Data File#: BNRSPK

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: January 14, 1986

Date Analyzed: January 15, 1986 Conc. Units: mcg/L

		Quantity				
	Compound	_m/e_	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<múl< td=""></múl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162			-	<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dime thylph thala te	163				<mul< td=""></mul<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mul< td=""></mul<>
20.	Fluorene	165	2054	16555	19.3	20.0
21.	Diethylphthalate	149				<mul< td=""></mul<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-bromophenylphentyl ether	248				<mdl< td=""></mdl<>

Compound	Quantity m/e	Scan #	Area	Det Conc	Spiked Conc
1. Anthracene D-10	188		132,499	110.4	100.0
2. Chrysene D-12	240		76,944	91.7	100.0
3.					
4.					

Tentatively Identified Compounds

10.

Compound	<u>Scan #</u>	NBS LIB FIT	Base m/e	Area	Est Conc
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					

		Quantity				_
	Compound	m/e	Scan #	Area	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178			-	<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mul< td=""></mul<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				2.9
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mul< td=""></mul<>
37.	Benzo[k]Fluoranthene	252				<mul.< td=""></mul.<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

1

į

ć

Sample Source: Burns & McDonnell

Submitter ID#: S-84 0R

ETSRC IU#: 5120519 Data File#: BN5120519

Sample Matrix: Water

Methoa: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 21, 1986 Conc. Units: mcg/L

	Commoning	Quantity	S 0 2 7 #	Amaa	Cana	Comm Conc
	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<hdl< td=""></hdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mul< td=""></mul<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<m0l< td=""></m0l<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<ทับL
11.	Naphthalene	128				<ridl< td=""></ridl<>
12.	Hexachlorobutadiene	225				<mul< td=""></mul<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<11DL
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
2ú.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248	-			<mdl< td=""></mdl<>

	Quantity			Det	Spiked
Compound	m/e	<u>Scan #</u>	<u>Area</u>	Conc	Conc
1. Anthracene D-10	188	2424	131211	109.3	100.0
2. Chrysene D-12	240	3382	114619	117.5	100.0
3					

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base _m/e	Area	_Est_Conc
 1,1' Ethane Bis Oxy(Ethoxy) 	1039		46		
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					
sc#25120518/					

		Quantity				
	Compound	m/e	<u>Scan #</u>	<u>Area</u>	<u>Conc</u>	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				

Sample Source: Burns & McDonnell

Submitter ID#: D-83 OR

ETSRC ID#: 5120518 Data File#: BN5120518

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 21, 1986 Conc. Units: mcg/L

		Quantity	C "	A	0	Cause Cause
	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				< M DL
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexach loroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

		Quantity			Det	Spiked
	Compound	_m/e_	Scan #	Area	Conc	Conc
1.	Anthracene D-10	188	2426	159,063	85.3	100.0
2.	Chrysene D-12	240	3384	88,236	105.0	100.0

3.

4.

9. 10.

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1. Ethane 1,1'-Oxy Bis (2-Ethoxy)	1029	943	59		
2. Diethyl Carbitol	1085				
3.	1632				
4.	2051				
5.					
6.		•			
7.					
გ.					

		Quantity		_	_	
	Compound	<u>_m/e_</u>	Scan #	<u>Area</u>	Conc	Corr Conc
24.	Hexachlorobenzene	284		i		<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178			-	<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149				<mdl< td=""></mdl<>
35.	Di-n-Octylphthalate	149				KMDL
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<id)dl< td=""></id)dl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				MDL
42.	N-Nitroso-n-propylamine	70				

Sample Source: Burns & McDonnell

Submitter ID#: S-820R

ETSRC ID#: 5120517 Data File#: BN5120517

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 20, 1986 Conc. Units: mcg/L

	Compound	Quantity _m/e_	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				KMDL
11.	Naphtha lene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				KMDL
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248	-			<mdl< td=""></mdl<>

	Quantity	•		Det	Spiked
Compound	m/e	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2253	67,653	56.4	100.0
2. Chrysene D-12	240	3211	44,472	45.6	100.0
3.					
4.					

Tentatively Identified Compounds

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.					
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					

Compound	Quantity <u>m/e</u>	Scan #	Area	Conc	Corr Conc
23. 4-Bromophenylphentyl eth	ner 248				<mul< td=""></mul<>
24. Hexachlorobenzene	284				<mdl< td=""></mdl<>
25. Phenanthrene	178				<mdl< td=""></mdl<>
20. Anthracene	178				<mdl< td=""></mdl<>
27. Di-n-Butylphthalate	149				<mul< td=""></mul<>
28. Fluoranthene	202				<mdl:< td=""></mdl:<>
29. Pyrene	202				<mdl< td=""></mdl<>
30. Butylbenzylphthalate	149				₫ MDL
<pre>31. Benz[a]anthracene</pre>	228				<mdl< td=""></mdl<>
32. 3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33. Chrysene	228				<mdl< td=""></mdl<>
34. Bis[2-ethylhexyl]phthala	ite 149				<mdl< td=""></mdl<>
35. Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36. Benzo[b]Fluoranthene	252				<mul< td=""></mul<>
<pre>37. Benzo[k]Fluoranthene</pre>	252				<mdl< td=""></mdl<>
38. Benzo[a]Pyrene	252				<ndl< td=""></ndl<>
39. 1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40. Benzidine	184				< nu L
41. 4-Chlorophenyl phenyl et	ther 204				<mdl< td=""></mdl<>
42. N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

Environmental Trace Substances Research Center

Base Neutral Result Sheet

Sample Source: Burns & McDonnell

Submitter ID#: D-810R

ETSRC ID#: 5120516 Data File#: BNO516RP

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: February 10, 1986 Conc. Units: mcg/L

	Compound	Quantity m/e	Scan #	Area	Conc	Corr Conc
_			Jean #	Al Ed	Conc	
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<4DL
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mul< td=""></mul<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mul< td=""></mul<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<iddl< td=""></iddl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<14DL
15.	Acenaphthylene	152				<mul< td=""></mul<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>

	Quanti ty			Det	Spiked
Compound	m/e	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2423	134,889	112.4	100.0
2. Chrysene D-12	240	3381	117,819	120.8	100.0
3.					

Tentatively Identified Compounds

		NBS LIB	Base		
Compound	Scan #	FIT	m/e	Area	Est Conc
_					

1.

4.

- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- **ŏ**.
- 9.
- 10.

		Quantity				
	Compound	m/e_	Scan #	<u>Area</u>	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178			•	<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149	3225	885	0.48	0.43
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				₫ MDL
34.	Bis[2-ethylhexyl]phthalate	149	3459	33,100	24.8	22.1
35.	Di-n-Octylphthalate	149	3681	5769	2.6	2.3
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<iridl< td=""></iridl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				MUL
40.	Benzidine	184				<ndl< td=""></ndl<>
41.	4-Chlorophenyl phenyl ether	204				440L
42.	N-Nitroso-n-propylamine	70				<mul< td=""></mul<>

Sample Source: Burns & McDonnell

Submitter ID#: D-87 OR

ETSRC ID#: 5120521 Data File#: BN5120521

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received: December 17, 1985

Date Analyzed: January 21, 1986 Conc. Units: mcg/L

		Quantity		_	_	
	Compound	m/e_	<u>Scan #</u>	<u>Area</u>	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<40 L
3.	1,4-Dicnlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<14D L
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				44DF
7.	Nitrobenzene	77				<iïidl< td=""></iïidl<>
8.	Isophorone	82				<1-1DL
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				<mdl< td=""></mdl<>
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dimethylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mdl< td=""></mdl<>
22.	N-Nitrodiphenylamine	169				<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mdl< td=""></mdl<>

		Quantity	-		Det	Spiked
	Compound	<u>m/e</u>	Scan #	Area	Conc	Conc
1.	Anthracene D-10	188	2421	138,263	115.2	100.0
2.	Chrysene D-12	240	3378	77,436	79.4	- 100.0

3.

4.

Tentatively Identified Compounds

	Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.	Methyl-3-Amino-1,24 Triazol	777	976	98		
2.	Propanol, 1-(2-Ethoxypropoxy)	848	868	59		
3.	3,5 Dimethyl-3-Hexanol	885	868	73		
4.						

5.

6. .

7.

8.

9.

10.

Submitter ID: Burns and	McDonnel #	I-59	0 R		
ETSRC ID: 5120514		_	R. Data File:	A5120514	
Sample Matrix: Water	\ 				
Analytes: Priority pollu	tant pheno	<u>1s</u>			
Method: EPA604 - GC/MS	·				
Date Recieved/Analyzed.	December	1986/Jan.	1, 1986		
Analyst: <u>Carl Orazio</u>					
Conc. Units: mag/L					

Quantity

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Pheno1					<mdl< td=""></mdl<>
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dime thylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2.4-Dinitrophenol	1695	878			10.0
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-vinitro, 2-Methylphenol					<md l<="" td=""></md>
11.	Pentachlorophenol	2119	4948		•	9.6
	Phenol D-5 (Surrogate) rec					38%

Submitter ID: Burns and McDonne	e1 # <u> </u>	-80 OR	
ETSRC ID: 5120515		R. Data File.	A5120515
Sample Matrix: Water			
Analytes: Priority pollutant pl	henols		
Method: EPA604 - GC/MS			
Date Recieved/Analyzed: Dec. 1	1986/Jan.	1, 1986	
Analyst: <u>Carl Orazio</u>			
Conclinité: magle			

Quantity

	Compound	_m/e_	Scan #	Area	Conc	Corr Conc
1.	Pheno1					<mdl< td=""></mdl<>
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dimethylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol			•		<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<mdl< td=""></mdl<>
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					37.6%

Submitter ID:	Burns and McDonnel	1 #		
ETSRC ID: 1 L	Samples-Detection	Levels Table	R. Data File:	

Sample Matrix: Water

Analytes. Priority pollutant phenols

Method: EPA604 - GC/MS

Date Recieved/Analyzed: Dec 1986/Jan. 1, 1986

Analyst: <u>Carl Orazio</u>

Conc Units: MCG/L

Quantity

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol		639	9714		1.7
2	2-Chlorophenol		656	9004		0.9
3.	2-Nitrophenol		960	2254		3.4
4	2,4-Dimethylphenol		989	5515		8.0
5.	2,4-Dichlorophenol		1030	4478		1.8
6.	4-Chloro, 3-Methylphenol		1283	20354		1.5
7.	2,4,6-Trichlorophenol		1406	12807		1.6
8.	2,4-Dinitrophenol		1687	2070		9.2
9.	4-Nitrophenol		1733	7940		6.8
10.	4,6-Dinitro, 2-Methylphenol		1871	8309		5.1
11.	Pentachlorophenol		2108	16647		1.9

Phenol D-5 (Surrogate) rec

Submitter ID: Burns and I	McDonnel #	5-51 OR	_
ETSRC ID: 5120513d		R. Data File:	A5120513
Sample Matrix: Water			
Analytes: Priority pollu	tant phenols		
Method: EPA604 - GC/MS			
Date Recieved/Analyzed.	Dec. 1986/Ja	n. 1, 1986	
Analyst: <u>Carl Orazio</u>			
Lone Units moult			

Quantity

	Compound	_m/e_	Scan #	Area	Conc	Corr Conc
1.	Phenol		644	3951	2.4	6.9
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dime thylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					MUL
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mul< td=""></mul<>
	Phenol D-5 (Surrogate) rec					45%

RESULT SUMMARY SHEETS
PHENOLIC PRIORITY POLLUTANTS

		Quantity			Det	Spiked
	Compound	_m/e_	Scan #	Area	Conc	Conc
1.	Anthracene D-10	188	2416	121366	100.0	100.0
2.	Chrysene D-12	240	3374	117996	114.4	114.4
~						

3.

4.

Tentatively Identified Compounds

		NBS			
		LIB	Base		
Compound	Scan #	FIT	m/e	Area	Est Conc

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Sample Source: ETSRC AQ/QC

Submitter ID#:

ETSRC ID#: 51095 lReagent Blank Data File#: BN51205RB

Sample Matrix: Water

Method: U.S.E.P.A. #625

Date Received:

Date Analyzed: January 22, 1986 Conc. Units: mcg/L

	Compound	Quantity _m/e_	Scan #	Area	Conc	Corr Conc
1.	Bis[2-Chloroethyl]ether	93				<mdl< td=""></mdl<>
2.	1,3-Dichlorobenzene	146				<mdl< td=""></mdl<>
3.	1,4-Dichlorobenzene	146				<mdl< td=""></mdl<>
4.	1,2-Dichlorobenzene	146				<mdl< td=""></mdl<>
5.	Bis[2-Chlorophropyl]ether	45				<mdl< td=""></mdl<>
6.	Hexachloroethane	117				<mdl< td=""></mdl<>
7.	Nitrobenzene	77				<mdl< td=""></mdl<>
8.	Isophorone	82				<mdl< td=""></mdl<>
9.	Bis[2-Chloroethoxy]methane	93				<mdl< td=""></mdl<>
10.	Trichlorobenzene	180				<mdl< td=""></mdl<>
11.	Naphthalene	128				<mdl< td=""></mdl<>
12.	Hexachlorobutadiene	225				di∾
13.	Hexachlorocyclopentadiene	237				<mdl< td=""></mdl<>
14.	2-Chloronaphthalene	162				<mdl< td=""></mdl<>
15.	Acenaphthylene	152				<mdl< td=""></mdl<>
17.	Dime thylphthalate	163				<mdl< td=""></mdl<>
18.	Acenaphthene	154				<mdl< td=""></mdl<>
19.	2,4-Dinitrotoluene	165				<mdl< td=""></mdl<>
20.	Fluorene	166				<mdl< td=""></mdl<>
21.	Diethylphthalate	149				<mul< td=""></mul<>
22.	N-Nitrodiphenylamine	169			•	<mdl< td=""></mdl<>
23.	4-Bromophenylphentyl ether	248				<mul< td=""></mul<>

		Quan ti ty				
	Compound	m/e_	<u>Scan #</u>	Area	Conc	Corr Conc
24.	Hexachlorobenzene	284				<mdl< td=""></mdl<>
25.	Phenanthrene	178				<mdl< td=""></mdl<>
26.	Anthracene	178				<mdl< td=""></mdl<>
27.	Di-n-Butylphthalate	149				<mdl< td=""></mdl<>
28.	Fluoranthene	202				<mdl< td=""></mdl<>
29.	Pyrene	202				<mdl< td=""></mdl<>
30.	Butylbenzylphthalate	149				<mdl< td=""></mdl<>
31.	Benz[a]anthracene	228				<mdl< td=""></mdl<>
32.	3,3'-Dichlorobenzidine	252				<mdl< td=""></mdl<>
33.	Chrysene	228				<mdl< td=""></mdl<>
34.	Bis[2-ethylhexyl]phthalate	149	3453	9480	3.5	3.5
35.	Di-n-Octylphthalate	149				<mdl< td=""></mdl<>
36.	Benzo[b]Fluoranthene	252				<mdl< td=""></mdl<>
37.	Benzo[k]Fluoranthene	252				<mdl< td=""></mdl<>
38.	Benzo[a]Pyrene	252				<mdl< td=""></mdl<>
39.	1,2-Diphenylhydrazine	77				<mdl< td=""></mdl<>
40.	Benzidine	184				<mdl< td=""></mdl<>
41.	4-Chlorophenyl phenyl ether	204				<mdl< td=""></mdl<>
42.	N-Nitroso-n-propylamine	70				<mdl< td=""></mdl<>

. . . .

•

Compound	Quantity _m/e	Scan #	Area	Conc	Corr Conc	Spk Conc
23. 4-Bromophenylphentyl ether	248				<mdl< th=""><th></th></mdl<>	
24. Hexachlorobenzene	284				<mdl< td=""><td></td></mdl<>	
25. Phenanthrene	178	2403	18634	15.3	16.4	20.0
26. Anthracene	178				<mdl< td=""><td></td></mdl<>	
27. Di-n-Butylphthalate	149				<mul< td=""><td></td></mul<>	
28. Fluoranthene	202	2838	23796	21.7	23.3	20.0
29. Pyrene	202				<mdf< td=""><td>•</td></mdf<>	•
30. Butylbenzylphthalate	149				<mol< td=""><td></td></mol<>	
31. Benz[a]anthracene	228				<mdl< td=""><td></td></mdl<>	
32. 3,3'-Dichlorobenzidine	252				<mdl< td=""><td></td></mdl<>	
33. Chrysene	228	3379	23610	68.0	73.1	75.0
34. Bis[2-ethylhexyl]phthalate	149	3452	2961	2.7	2.90	
35. Di-n-Octylphthalate	149				<mdl< td=""><td></td></mdl<>	
36. Benzo[b]Fluoranthene	252	3753	17421	21.4	23.0	20.0
37. Benzo[k]Fluoranthene	252				<mdl< td=""><td></td></mdl<>	
38. Benzola]Pyrene	252				<mdl< td=""><td></td></mdl<>	
39. 1,2-Diphenylnydrazine	77				<mdl< td=""><td></td></mdl<>	
40. Benzidine	184				<mdl< td=""><td></td></mdl<>	
41. 4-Chlorophenyl phenyl ether	204				<mdl< td=""><td></td></mdl<>	
42. N-Nitroso-n-propylamine	70				<mdl< td=""><td></td></mdl<>	

	Quantity			Det	Spiked
Compound	m/e	Scan #	Area	Conc	Conc
1. Anthracene D-10	188	2410	110,948	91.4	100.0
2. Chrysene D-12	240	3372	98,791	96.0	100.0
3					

Tentatively Identified Compounds

5.

7. 8. 9.

Compound	Scan #	NBS LIB FIT	Base m/e	Area	Est Conc
1.					
2.					
3.			•		

Submitter ID: Burns and McDonnel #_	D-85 OR
ETSRC ID: 5120520	R. Data File: 5120520
Sample Matrix: Water	
Analytes: Priority pollutant phenol	S
Method: EPA604 - GC/MS	
Date Recieved/Analyzed: Dec. 1986/	Jan. 1, 1986
Analyst: Carl Orazio	
Conc. Units: mcy/L	

Quantity

	Compound	m/e	Scan #	<u>Area</u>	Conc	Corr Conc
1.	Phenol					<mdl< td=""></mdl<>
2.	2-Chlorophenol			•		<#ÜL
3.	2-Nitrophenol					<mul< td=""></mul<>
4.	2,4-Dimethylphenol					<mul< td=""></mul<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					1DL</td
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<md l<="" td=""></md>
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					21.3%

Submitter ID: Burns and McDonnel #)-87 CR	
ETSRC Iu: 5120521	к. Data File: _	5120521
Sample Matrix: Water		
Analytes: Priority pollutant phenols		
Methou: <u>EPA6U4 - GC/MS</u>		
Date Recieved/Analyzed: Dec. 1986/Jan.	1, 1986	
Analyst: Carl Orazio		
Conc. Units: mcg/L		

Quanti ty

	Compound	m/e_	Scan #	Area	Conc	Corr Conc
,	Dh. m. 1					-MDI
1.	Pheno l					<mdl< td=""></mdl<>
2.	2-Chlorophenol					<₩DF
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dimethylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6	4-Chloro, 3-Me thylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
δ.	2,4-Dinitrophenol					<#DL
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					∢MDL
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					20.6%

Submitter ID: Burns and McDonnel #	0-93 CR	
ETSRC IO: 5120518	R. Data File:	A5120518
Sample Matrix: Water		
Analytes: Priority pollutant phenols		
Method. EPA6U4 - GC/MS		
Date Recieved/Analyzed. Dec. 1986/Ja	in. 1, 1986	
Analyst: Carl Orazio		
Cone. Units: meg/L		

		4				
	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol		653	4214		7.30
2.	2-Chlorophenol					<md l<="" td=""></md>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4	2,4-Dimethylphenol					<#IDL
5.	2,4-vichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<₩DL
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
გ.	2,4-Dinitrophenol					<mdl< td=""></mdl<>
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro 2-Methylphenol					4MDL
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					36 . 4%

Submitter ID: Burns and McDonnel # 5-84	OR	
ETSRC ID. 5120519	R. Data File:	5120519
Sample Matrix: Water		
Analytes: Priority pollutant phenols		
Method: EPA604 - GC/MS		
Date Recieved/Analyzed: Dec. 1986/Jan. 1,	1986	
Analyst: Carl Orazio		
Conc. Unit: mcg/L		

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol					<mdl< td=""></mdl<>
2	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mol< td=""></mol<>
4.	2,4-Dimethylphenol					⊴ nDL
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<md l<="" td=""></md>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<40 L
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mdl< th=""></mdl<>
	Phenol D-5 (Surrogate) rec					35.5%

Submitter ID: Burns and McDonne	e1 # D-81	oR	
ETSRC ID. 5120516		R. Data File.	A5120516
Sample Matrix: Water			
Analytes. Priority pollutant p	nenols		
Method. EPA604 - GC/MS			
Date Recieved/Analyzed: <u>Dec.</u>	1986/Jan. 1	1986	
Analyst: <u>Carl Orazio</u>			
Conclust: megle			

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Pheno1					<mdl< td=""></mdl<>
2.	2-Chlorophenol					<#IDL
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dimethylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6	4-Chloro 3-Methylphenol					◇I I
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<mdl< td=""></mdl<>
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					27.9%

Submitter ID: Burns and McDonnel #	5-82 OR	
ETSRC ID: 5120517	R. Data File:	A5120517
Sample Matrix: Water		
Analytes: Priority pollutant phenols		
Me thod: EPA604 - GC/MS		
Date Recieved/Analyzed: Dec. 1986/J	an. 1, 1986	
Analyst: Carl Orazio		
Conc Units: magle		

	Compound	m/e_	Scan #	Area	Conc	Corr Conc
1.	Phenol		647	4067		7.1
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4	2,4-Dime thy Iphenol					MDL
5.	2,4-Dichlorophenol					<ndl< td=""></ndl<>
6.	4-Chloro, 3-Methylphenol					<mûl< td=""></mûl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<mul< td=""></mul<>
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<#DL
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					24.0%

Submitter ID: Burns and McDo	nnel # <u>D-</u> 역국 이	<u> </u>	
ETSRC ID: 5120526		R. Data File:	5120526
Sample Matrix: Water			
Analytes. Priority pollutant	phenols		
Method: EPA604 - GC/MS			
Date Recieved/Analyzed: <u>Dec</u>	. 1986/Jan. 1, 19	86	
Analyst: Carl Orazio			
Conc Unita: may/L			

		quantity				
	Compound	_m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol		652	3675		18.6
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dimethylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<mdl< td=""></mdl<>
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					MDL
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					20.5%

Submitter ID: Burns and McDonnel #	D-93 OR
ETSRC ID. 5120527	R. Data File: A5120527
Sample Matrix: Water	
Analytes: Priority pollutant phenols	<u>. </u>
Method: EPA604 - GC/MS	
Date Recieved/Analyzed. Dec. 1986/J	an. 1, 1986
Analyst: <u>Carl Orazio</u>	
Conc. Units: mag/L	

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Pheno1			1349		6.6
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dimethylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<#DL
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					21.2%

Submitter ID: Burns and McDonnel # D-	90 OK
ETSRC ID: 5120524	R. Data File: 5120524
Sample Matrix: Water	
Analytes: Priority pollutant phenols	
Method. EPA604 - GC/MS	
Date Recieved/Analyzed. Dec. 1986/Jan.	1, 1986
Analyst: Carl Orazio	
Conc. Units; mag/L	

Quantity

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol					<mdl< td=""></mdl<>
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dime thylphenol					<mdl< td=""></mdl<>
5.	2,4-bichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					₫ MDL
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					MUL
11.	Pentachlorophenol					<mdl< td=""></mdl<>

Phenol D-5 (Surrogate) rec

Submitter ID: 8	Burns and McDo	nnel # <u>I</u>	9-91 CR	<u> </u>	
ETSRC ID:	5120525		R.	Data File:	A5120525
Sample Matrix:	Water		-		
Analytes: Prior	ity pollutant	phenols			
Method: EPA604	- GC/MS	 ·			•
Date Recieved/Ar	nalyzed. <u>Dec</u>	. 1986/Jan.	1, 1986		
Analyst: Car	·1 Orazio	- <u>-</u>			
Conc. Units: ma	-9 L				

	Compound	m/e_	Scan #	Area	Conc	Corr Conc
1	Dhanal					ZMD1
	Phenol					<mdl< td=""></mdl<>
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dime thylphenol					SADL
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					₫DL
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					21.3%

Submitter ID: Burns and McDonnel $\#$ $5-88$	<u> </u>	
ETSRC ID: 5120522	R. Data File:	5120522
Sample Matrix: Water		
Analytes: Priority pollutant phenols		
Metnod: EPA6U4 - GC/MS		
Date Recieved/Analyzed: Dec. 1986/Jan. 1,	1986	
Analyst: <u>Carl Orazio</u>		
Conc. Units: mag/L		

	Compound	_m/e	Scan #	Area	Conc	Corr Conc
1.	Pheno1					<mdl< td=""></mdl<>
2	2-Chlorophenol					₽DL
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dime thylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					MDL
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					™ DL
9.	4-Nitrophenol					<mul< td=""></mul<>
10.	4,o-Dinitro, 2-Methylphenol					⊲MDL
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					27%

Submitter ID:	Burns and McDonne	el #	-89 of	ζ	
ETSRC ID.	5120523		R.	Data File:	5120523
Sample Matrix:	Water		-		
Analytes: Prio	rity pollutant p	henols			
Method: EPA604	- GC/MS				
Date Recieved/A	nalyzed: <u>Dec.</u>	1986/Jan.	1, 1986	, , 	
Analyst: Car	rl Orazio				
Come Units: mc	4/L				

	Compound .	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol					<mdl< td=""></mdl<>
2.	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dime tnylphenol					≪MDL
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					₫¹ DL
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<mul< td=""></mul<>
9.	4-Nitrophenol					<mül< td=""></mül<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					21.6%

RESULT SUMMARY SHEETS
PESTICIDES AND PCBs

Submitter ID: Burns and McDonnel #	D-91 CR (DUP)	
ETSRC ID: 5120525d	R. Data File:	A5120525U
Sample Matrix: Water		
Analytes: Priority pollutant phenols	-	
Method: EPA604 - GC/MS		
Date Recieved/Analyzed: Dec. 1986/Ja	n. 1, 1986	
Analyst: <u>Carl Orazio</u>		
Conc Units: meg/L		

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol					<mdl< td=""></mdl<>
2	2-Chlorophenol					<mdl< td=""></mdl<>
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dime thylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<mdl< td=""></mdl<>
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					41DL
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					20.8%

Submitter ID: Burns and McDonnel #	D-90 OR (Spk)	
ETSRC ID: 5120524\$	R. Data File:	5120524 \$ \$
Sample Matrix: Water		
Analytes: Priority pollutant phenols		
Method: EPA6U4 - GC/MS		
Date Recieved/Analyzed: Dec. 1986/Jan.	. 1, 1986	
Analyst: <u>Carl Orazio</u>		
Conc. Units: meg/L		

Quantity

	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol			2593		6.8
2.	2-Chlorophenol					≪MDL
3.	2-Nitrophenol			739		4.8
4.	2,4-Dimethylphenol					<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol			678		19.0
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<#DL
9.	4-Nitrophenol			475		4.5
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol			5708		19.0

Phenol D-5 (Surrogate) rec

Submitter ID: Bu	ırns and McDonnel $\#$	D-94	OR	
ETSRC ID:	5120528		R. Data File:	A5120528
Sample Matrix: _	Water			
Analytes: Priori Method: EPA604 -	ity pollutant phenol - GC/MS	<u>s</u>		
Date Recieved/Ana	alyzed: <u>Dec. 1986/</u>	Jan. 1, 19	86_	
Analyst:Carl	Orazio			
Conc Units me	8/L			

	Compound	m/e	Scan #	Area	Conc	Corr	Conc
	_						
1.	Phenol						<mdl< td=""></mdl<>
2.	2-Chlorophenol						₫ ÛL
3.	2-Nitrophenol						<mdl< td=""></mdl<>
4.	2,4-Dime thylphenol					•	<mdl< td=""></mdl<>
5.	2,4-Dichlorophenol						<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol						<mdl< td=""></mdl<>
7.	2,4,6-Trichlorophenol						<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol						<mdl< td=""></mdl<>
9.	4-Nitrophenol						<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol						44DL
11.	Pentachlorophenol						<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					2	1.2%

Submitter ID: Burns and McDonnel # D-95	OR	
ETSRC ID: 5120529	R. Data File:	A5120529
Sample Matrix: Water		
Analytes: Priority pollutant phenols		
Method: EPA604 - GC/MS		
Date Recieved/Analyzed: Dec. 1986/Jan.	1, 1986	
Analyst: <u>Carl Orazio</u>		
Conc Units: mag/L		

		qualitat aj				
	Compound	m/e	Scan #	Area	Conc	Corr Conc
1.	Phenol					<mdl< td=""></mdl<>
2.	2-Chlorophenol					∢MDL
3.	2-Nitrophenol					<mdl< td=""></mdl<>
4.	2,4-Dimethylphenol					<41DL
5.	2,4-bichlorophenol					<mdl< td=""></mdl<>
6.	4-Chloro, 3-Methylphenol					<#IDL
7.	2,4,6-Trichlorophenol					<mdl< td=""></mdl<>
8.	2,4-Dinitrophenol					<mdl< td=""></mdl<>
9.	4-Nitrophenol					<mdl< td=""></mdl<>
10.	4,6-Dinitro, 2-Methylphenol					<mdl< td=""></mdl<>
11.	Pentachlorophenol					<mdl< td=""></mdl<>
	Phenol D-5 (Surrogate) rec					36.7%

Environmental Trace Substances Research Center Volatile Result Summary Detection Limits

Sample Source: Burns & McDonnell

Submitter ID#:

ETSRC ID#: Data File#:

Sample Matrix: Water Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Analyst: C. Urazio

Conc. Units: mcg/L

	Compound	Qantity m/e	Scan #	Area	Conc	Corr Conc
1	Methylene chloride	84	<u> </u>	711 Cd	CONC	
	•					2.5
	1,1 Dichloroethylene	96				2.5
	1,1 Dichloroethane	63				4.0
4.	1,2 uichloroethylene	96				1.5
5.	Chloroform	83				2.5
6.	1,2, Dichloroethane	62				2.5
7.	1,1,1 Trichloroethane	97				3.0
8.	Carbon tetrachloride	117				2.5
9.	Bromodichloromethane	127				2.0
10.	1,2 Dichloropropane	65				5.0
11.	1,3 Dichloropropylene	75				4.0
12.	Trichloroethylene	130				1.5
13.	Benzene	78				4.0
14.	cis 1,3 Dichloropropylene	75				2.5
15.	1,1,2 Trichloroethane	97				4.0
10.	Dibromochlorome thane	127				2.5
17.	2 Chloroethylvinyl ether	63				5.0
18.	Bromoform	173				4.0
19.	Tetrachloroethylene	164				3.0
20.	1,1,2,2 Tetrachloroethane	83				5.5
21.	Toluene	92				5.0
22.	Ch1 orobenzene	112				5.0
23.	Ethylbenzene	91				6.0

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-81 ETSRC ID#: 85120501

Data File#: Vol 501B

Sample Matrix. Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst: C. Orazio

		Quantity				
	Compound	<u>m/e</u>	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	209	27740	26.3	23.3
2	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mul< td=""></mul<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mul< td=""></mul<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<ndl< td=""></ndl<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				<mdl< td=""></mdl<>
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromochloromethane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<4DL
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

RESULT SUMMARY SHEETS
VOLATILE PRIORITY POLLUTANTS

SUMMARY OF POLYCHLORINATED BIPHENYLS AND CHLORINATED PESTICIDE RESIDUE CONCENTRATIONS (ng/L)

	нсв	Hepta- chlor	Aldrin	pp'DDE	Aroclor 1242	Aroclor 1254	Aroclor 1260			
85120513 S-510R	<2.0	<2.0	<2.0	10.6	<50.0	<50.0	<50.0			
85120514 I-590R	<2.0	<2.0	<2.0	11.6	<50.0	<50.0	<50.0			
85120515 S-800R	<2.0	<2.0	<2.0	25.0	<50.0	<50.0	<50.0	·		
85120516 D-810R	<2.0	<2.0	<2.0	12.5	<50.0	<50.0	<50.0			
85120517 S-820R	29.3	<2.0	<2.0	37.3	<50.0	<50.0	<50.0			
85120518 D830R	<2.0	<2.0	<2.0	<5.0	<50.0	<50.0	<50.0			
851205519 S840R	<2.0	<2.0	<2.0	5.1	<50.0	<50.0	<50.0			
85120520 D-850R	<2.0	<2.0	<2.0	<5.0	<50.0	<50.0	<50.0			
85120521 D-870R	<2.0	<2.0	<2.0	14.0	<50.0	<50.0	<50.0			
85120522 S-880R	8.5	<2.0	<2.0	6.2	<50.0	<50.0	<50.0			

SUMMARY OF POLYCHLORINATED BIPHENYLS AND CHLORINATED PESTICIDE RESIDUE CONCENTRATIONS (ng/L)

	НСВ	Hepta- chlor	Aldrin	pp'DDE	Aroclor 1242	Aroclor 1254	Aroclor 1260			
851205523 D-89 OR	8.2	<2.0	<2.0	117.0	<50.0	<50.0	<50.0			
85120524 D-900R	31.4	<2.0	<2.0	<5.0	<50.0	<50.0	<50.0			
85120525 D-910R	48.8	<2.0	<2.0	36.4	<50.0	<50.0	<50.0			
85120526 D-920R	9.3	<2.0	<2.0	23.3	<50.0	<50.0	<50.0			
85120527 D-930R	3.8	<2.0	<2.0	<5.0	<50.0	<50.0	<50.0			
85120528 D-940R	16.7	<2.0	<2.0	<5.0	<50.0	<50.0	<50.0			
85120529 D950R	5.4	<2.0	<2.0	<5.0	<50.0	<50.0	<50.0			

SUMMARY OF CHLORINATED PESTICIDE RESIDUE CONCENTRATIONS ng/L (parts per trillion)

:	αBHC	yВНС	в внс	δВНС	Hept. Epox.	Chlor- danes	Dieldrin	Endrin	pp'DDD	pp'DDT	Methoxy- chlor
85120513 S-510R	5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0
85120514 I-590R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0
85120515 S-800R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0
85120516 D-810R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0
85120517 S-820R	<5.0	100.0	<10.0	<10.0	<5.0	258.0	14.6	<5.0	658.0	<10.0	<20.0
85120518 D-830R	<5.0	<5.0	<10.0	504.0	<5.0	72.4	18.8	<5.0	197.0	50.6	<20.0
85120519 S-840R	<5.0	<5.0	<10.0	312.0	<5.0	89.0	<5.0	140.0	<10.0	<10.0	<20.0
85120520 D-850R	<5.0	< 5.0	<10.0	70.0	<5.0	28.5	<5.0	<5.0	<10.0	<10.0	< 20.0
85120521 D-870R	<5.0	<5.0	<10.0	<10.0	<5.0	23.0	<5.0	<5.0	<10.0	<10.0	< 20.0
85120522 S-880R	< 5.0	<5.0	<10.0	<10.0	< 5.0	23.0	< 5.0	<5.0	<10.0	<10.0	< 20.0

	αBHC	YBHC	в внс	 ВНС	Hept. Epox.	Chlor- danes	Dieldrin	Endrin	pp'DDD	pp'DDT	Methoxy- chlor	
85120523 D-890R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0	
85120524 D-900R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0	
85120525 D-910R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0	
85120526 D-920R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0	
85120527 D-930R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0	
85120528 D-940R	<5.0	<5.0	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0	
85120529 D-950R	<5.0	<5.0 _.	<10.0	<10.0	<5.0	<15.0	<5.0	<5.0	<10.0	<10.0	<20.0	

Surroyate Kesults

Compound	Quantity _m/e_	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	528	71067	31.4	30.0
2. Toluene D-8	100	715	31698	32.2	30.0
3. p-Bromofluorobenzene	95	903	21185	33.5	30.0

Tentatively Identified Compounds

	Quantity				
Compound	m/e	Scan #	Area	Conc.	Corr Conc
1. Acetone	58	226		-NU-	

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source Burns & McDonnell

Submitter ID#: D-87

ETSRC 10#: 85120505 Data File#: VOL505

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst: C. Orazio

		Quantity				
	Compound	_m/e_	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	209	6367	6.0	6.0
2.	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<hdl< td=""></hdl<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mul< td=""></mul<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mdl< td=""></mdl<>
11.	1.3 bichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				nDL</td
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromochlorome thane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mul< td=""></mul<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

Compound	Quantity _m/e	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	528	65302	28.8	<mol< td=""></mol<>
2. Toluene D-8	100	715	27951	28.4	<mdl< td=""></mdl<>
3. p-Bromofluorobenzene	95	905	17151	27.4	<mdl< td=""></mdl<>

Tentatively Identified Compounds

		Quantity				•
	Compound	m/e	Scan #	Area	Conc.	Corr Conc
1.	Acetone	58	228	184247	-NQ-	

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source. Burns & McDonnell

Submitter ID#. D-85

ETSRC ID#: 85120504

Data File#. VOL504

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst. C. Orazio

	Compound	Quantity m/e	Scan #	Amon	Cono	Comp Co
			Scan #	Area	Conc.	Corr Conc
	Methylene chloride	84	209	6947	6.6	6.3
2.	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 bichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mdl< td=""></mdl<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mdl< td=""></mdl<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130			٠	<mdl< td=""></mdl<>
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromochloromethane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				

Surrogate Results	Surroga	te	Resul	ts
-------------------	---------	----	-------	----

	Qantity				
Compound	m/e_	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	528	78043	34.4	30.0
2. Toluene D-8	100	716	34953	35.5	30.0

904

2311

36.9

30.0

Tentatively Identified Compounds

95

3. p-Bromofluorobenzene

	Qantity				
Compound	m/e	Scan #	Area	Conc.	Corr Conc
1. Acetone	58	226	17749	-NA-	

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter IU#: S-84 ETSRC IU#: 85120503

uata File#: VOL503

Conc. Units: mcg/L

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Analyst: C. Orazio

		Quantity				
	Compound	<u>m/e</u>	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	211	6248	5.9	6.1
2.	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 bichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mdl< td=""></mdl<>
5.	Chloroform	83				<mül< td=""></mül<>
б.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
	Carbon tetrachloride	117				MUL
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mdl< td=""></mdl<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				<mdl< td=""></mdl<>
13.	Benzene	78				KMÜL
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromo chlorome thane	127				<mul< td=""></mul<>
17.	2 Chloroethylvinyl ether	63				<mi)l< td=""></mi)l<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Ch1 orobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

	Quantity				
Compound	m/e_	Scan #	Area	Conc.	Corr Conc
1. Benzene b-8	84	528	77305	34.1	
2. Toluene D-8	100	716	33920	34.4	
3. p-Bromofluorobenzene	95	904	27581	43.8	

Tentatively Identified Compounds

Compound	Quantity m/e	Scan #	Area	Conc.	Corr Conc
1. Acetone	58	226	131557	-NO-	

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source Burns & McDonnell

Submitter ID#: D-83

ETSRC ID#: 85120502 Data File#: Vol 502

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed: Conc. Units: mcy/L

Analyst: C. Orazio

		Quantity				•
	Compound	m/e	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	210	66538	63.0	55.2
2.	1,1 Dichloroethylene	96				iDL</td
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mdl< td=""></mdl<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				<mul< td=""></mul<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mdl< td=""></mdl<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				<mdl< td=""></mdl<>
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromochlorome thane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

0	แล	n	ti	tv

Compound	m/e	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	527	57577	25.4	30.0
2. Toluene D-8	100	714	24133	24.5	30.0
3. p-Bromofluorobenzene	95	903	17133	27.4	30.0

Tentatively Identified Compounds

Oua	'n	+ i	+1/
UUc	ın	T.I	LV

Compound	m/e	Scan #	Area	Conc.	Corr Conc
1. Acetone	58	226		-NU-	

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-90 ETSRC ID#: 85120507

ID#: 85120507 Data File#: Vol507

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst: C. Urazio

		Quanti ty				
	Compound	_m/e_	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	209	96851	75.7	83.2
2.	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mul< td=""></mul<>
5.	Cnloroform	83				<fidl< td=""></fidl<>
6.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<#DL
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				<mdl< td=""></mdl<>
13.	Benzene	78				<mul< td=""></mul<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromochlorome thane	127				ďiDL
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				₽
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

Compound	Quantity _m/e	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	528	69364	30.6	
2. Toluene D-8	100	715	31487	31.9	
3. p-Bromofluorobenzene	95	905	22001	35,2	

Tentatively Identified Compounds

		Quantity	Quantity			
	Compound	m/e	Scan #	Area	Conc.	Corr Conc
1.	Ace tone	58	227		-NQ-	

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-88

ETSRC ID#: 85120506 Data File#: VOL506

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received. December 17, 1985

Date Analyzed: Conc. Units mcg/L

Analyst: C. Orazio

		Quantity	. "			
	Compound	m/e	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	209	5464	5.2	6.1
2	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 bichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mdl< td=""></mdl<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mdl< td=""></mdl<>
11.	1 3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				<mdl< td=""></mdl<>
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromochlorome thane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mül< td=""></mül<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mül< td=""></mül<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mûl< td=""></mûl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

Compound	Quantity _m/e	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	527	107515	42.5	30.0
2. Toluene D-8	100	715	50046	42.6	30.0
3. p-Bromofluorobenzene	95	904	25339	31.1	30.0

Tentatively Identified Compounds

Compound	Quantity _m/e_	Scan #	Area	Conc.	Corr Conc
1. Acetone	58	230	3842	-NQ-	
2. 2-Methylheptadienedur	71	333		-NQ-	
3. Hexane		488		-NQ-	

Environmental Trace Substances kesearch Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-92

Data File#: VOL509 ETSRC IU#: 85120509

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst: C. Urazio

	Compound	Quantity _m/e	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	211	45017	35.2	51.0
2.	1,1 Dichloroethylene	96				
3.	1,1 Dichloroethane	63				
4.	1,2 Dichloroethylene	96				
5.	Chloroform	83				
6.	1,2, Dichloroethane	62				
7.	1,1,1 Trichloroethane	97				
8.	Carbon tetrachloride	117				
9.	Bromodichloromethane	127				
10.	1,2 Dichloropropane	65				
11.	1,3 Dichloropropylene	75				
12.	Trichloroethylene	130				
13.	Benzene	78				
14.	cis 1,3 Dichloropropylene	75				
15.	1,1,2 Trichloroethane	97				
16.	Dibromochlorome thane	127				
17.	2 Chloroethylvinyl ether	63				
18.	Bromoform	173				
19.	Tetrachloroethylene	164				
20.	1,1,2,2 Tetrachloroethane	83				
21.	Toluene	92				
22.	Chlorobenzene	112				
23.	Ethylbenzene	91				

Surrogate Results

Compound	Quantity _m/e_	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	527	59317	26.2	
2. Toluene D-8	100	715	25144	25.5	
3. p-Bromofluorobenzene	95	904	15144	24.2	

Tentatively Identified Compounds

		Quantity				
	Compound	m/e_	Scan #	Area	Conc.	Corr Conc
1.	Ace tone	71	332		-NQ-	

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-91 ETSRC ID#: 85120508D

Data File#: Vol508D

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst: C. Orazio

	Compound	Quantity _m/e_	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	210	3842	3.0	2.1
2.	1,1 Dichloroethylene	96			٠	<mul< td=""></mul<>
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mdl< td=""></mdl<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97		•		<mul< td=""></mul<>
8.	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mul< td=""></mul<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				™ DL
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromo chlorome thane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
2u.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surroyate Results

0ua	n	+ i	+1/
Ulla	n	LI	LV

Compound	m/e	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	527	69199	27.3	30.0
2. Toluene D-8	100		27544	23.4	30.0
3. p-Bromofluorobenzene	95		18556	22.7	30.0

Tentatively Identified Compounds

	quantity				
Compound	m/e	Scan #	Area	Conc.	Corr Conc
1. Acetone	58				

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-91 ETSRC ID#: 85120508

Data File#: 1/01508

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst: C. Orazio

	Compound	Quantity n/e	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	209	1764	1.4	1.6
	1,1 Dichloroethylene	96				∢MDL
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mdl< td=""></mdl<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				MUL
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mul< td=""></mul<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mul< td=""></mul<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				<mdl< td=""></mdl<>
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mul< td=""></mul<>
15.	1,1,2 Trichloroethane	97				<mul< td=""></mul<>
16.	Dibromochlorome thane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mul< td=""></mul<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surroga	te	Resul	ts
---------	----	-------	----

Quantity	ty	i	t	n	ua	Q
----------	----	---	---	---	----	---

Compound	_m/e	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	528	56116	22.8	30.0
2. Toluene D-8	100	714	22687	19.3	30.0
p-Bromofluorobenzene	95	904	15317	18.8	30.0

Tentatively Identified Compounds

Q	ua	n	ti	ty
ч	uu	"	U !	L.y

Compound	_m/e	Scan #	Area	Conc.	Corr Conc
1 Acetone	58				

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-95

ETSRC ID#: 5120512 Data File#: VOL 512

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

nalyzed: Conc. Units: mcg/L

Analyst: C. Orazio

		Quantity		_	_	
	Compound	m/e	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	211	14849	11.6	10.3
2.	1,1 Dichloroethylene	96				₫DL
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 vichloroethylene	96				<hdl< td=""></hdl<>
5.	Chloroform	83				<hdl< td=""></hdl<>
ő.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mdl< td=""></mdl<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				<mdl< td=""></mdl<>
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 uichloropropylene	75				<mul< td=""></mul<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromochlorome thane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				<mdl< td=""></mdl<>
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

Compound	Quantity _n/e_	Scan #	Areä	Conc.	Corr Conc
1. Benzene D-8	84	528	47338	18.7	30.0
2. Toluene D-8	100	714	18824	16.0	30.0
3 n-Brownfluorobenzene	95	903	13356	23 1	30 O

Tentatively Identified Compounds

	Quantity				
Compound	n/e	Scan #	Area	Conc.	Corr Conc
1. 1.3-0xathiolane	60	475	-NO-		

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-94 ETSRC ID#: 85120511

Data File#: VOL511

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Conc. Units: mcg/L

Analyst: C. Orazio

		Quantity				
	Compound	m/e_	Scan #	Area	Conc.	Corr Conc
	Methylene chloride	84	210	2333	9.1	11.9
2.	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				<mdl< td=""></mdl<>
5.	Chloroform	83				<mdl< td=""></mdl<>
6.	1,2, Dichloroethane	62				<40L
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				MDL
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				MUL
13.	Benzene	78				<mdl< td=""></mdl<>
14.	cis 1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
16.	Dibromo chlorome thane	127				<mdl< td=""></mdl<>
17.	2 Chloroethylvinyl ether	63				<mul< td=""></mul<>
18.	Bromoform	173				<mdl< td=""></mdl<>
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				41DL
21.	Toluene	92				<mul< td=""></mul<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

				Conc.	
1. Benzene D-8	84	529	53026	20.9	30.0
2. Toluene D-8	100	715	21994	18.7	30.0
3. p-Bromofluorobenz	ene 95	906	14013	17.2	30.0

Tentatively Identified Compounds

Oua	~	+:	+11
vua	11	ել	LV

	Compound	m/e	Scan #	Area	Conc.	Corr Conc
1	Acatone	258				

Environmental Trace Substances Research Center Volatile Result Summary

Sample Source: Burns & McDonnell

Submitter ID#: D-93

ETSRC IU#: 85120510 Data File#: Vol.510

Sample Matrix: Water

Method: U.S.E.P.A. #624

Date Received: December 17, 1985

Date Analyzed:

Analyst: C. Orazio

Conc. Units: mcg/L

		Quanti ty				
	Compound	m/e	Scan #	Area	Conc.	Corr Conc
1.	Methylene chloride	84	211	1731	6.8	10.9
2.	1,1 Dichloroethylene	96				<mdl< td=""></mdl<>
3.	1,1 Dichloroethane	63				<mdl< td=""></mdl<>
4.	1,2 Dichloroethylene	96				∢ΝυL
5.	Chloroform	83				<mdl< td=""></mdl<>
δ.	1,2, Dichloroethane	62				<mdl< td=""></mdl<>
7.	1,1,1 Trichloroethane	97				<mdl< td=""></mdl<>
8.	Carbon tetrachloride	117				<mdl< td=""></mdl<>
9.	Bromodichloromethane	127				<mdl< td=""></mdl<>
10.	1,2 Dichloropropane	65				<mdl< td=""></mdl<>
11.	1,3 Dichloropropylene	75				<mdl< td=""></mdl<>
12.	Trichloroethylene	130				MOL
13.	Benzene	78				<mul< td=""></mul<>
14.	cis 1,3 Dichloropropylene	75				<hdl< td=""></hdl<>
15.	1,1,2 Trichloroethane	97				<mdl< td=""></mdl<>
-	Dibromo chlorome thane	127				MDL
17.	2 Chloroethylvinyl ether	63				<mdl< td=""></mdl<>
18.	Bromoform	173				<#DL
19.	Tetrachloroethylene	164				<mdl< td=""></mdl<>
20.	1,1,2,2 Tetrachloroethane	83				44DL
21.	Toluene	92				<mdl< td=""></mdl<>
22.	Chlorobenzene	112				<mdl< td=""></mdl<>
23.	Ethylbenzene	91				<mdl< td=""></mdl<>

Surrogate Results

	Quantity				
Compound	m/e	Scan #	Area	Conc.	Corr Conc
1. Benzene D-8	84	529	53927	21.3	30.0
2. Toluene D-8	100	716	24314	20.7	30.0
3. p-Bromofluorobenzene	95	906	15796	19.4	30.0

Tentatively Identified Compounds

	Quantity				
Compound	π/e	Scan #	Area	Conc.	Corr Conc

GROSS ALPHA AND BETA DECEMBER, 1985

Controls for Environmental Pollution, Inc. P.O. BOX 5351 • Santa Fe, New Mexico 87502

M STATE (5057/98) 2084 1

OUT OF STATE 800/545-2188

PAGE 2

REPORT OF ANALYSIS

LAB # 85-12-462

SAMPLE IDENTIFICATION	DATE COLLECTED	TYPE OF ANALYSIS	pCi/liter_
D 83	12/12/85	Gross Alpha Gross Beta	<2 31+/-20
D 85	12/11/85	Gross Alpha Gross Beta	17+/-13 23+/-10
D 92	12/12/85	Gross Alpha Gross Beta	19+/-13 11+/-10
S 84	12/11/85	Gross Alpha Gross Beta	270+/-114 171+/-28

PRIORITY POLLUTANTS
MAY, 1986

12161 Lackland Road, St. Louis, Missouri 63146 (314) 434-6960

REPORT OF ANALYSIS

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

REPORT DATE:

July 8, 1986

SAMPLE ANALYZED: 18 groundwater samples

for priority pollutants.

DATE RECEIVED:

May 20 & 21,1986

METHODS USED:

EPA Approved Methods

PROJ. #: 3060-00377
P.B. #:

OA COMPOUND	DETECTION LIMITS (ug/1)	S-51 (ug/1)	S-80 (ug/1)	D-83 (ug/1)	D-89 (ug/1)	D-90 (ug/1)
ENZENE	5	ND	מא	שא	ND	מא
ROMOFORM	10	ND	ND	ND	ND	ND
CARBON TETRACHLORIDE	5	ND	מא	ND	ND	ND
HLOROBENZENE	5	ND	ND	ND	ND	ND
HLORODIBROMOMETHANE	5	ND	ND	ND	ND	ND
HLOROETHANE	10	ND	ON	ND	ND	ND
-CHLOROETHYLVINYL ETHER	10	ND	ND	ND	ND	ND
HLOROFORM	5	ND	ND	ND	ND	ND
I CHLOROBROMOMETHANE	5	ND	ND	ND	ND	ND
, 1-DICHLOROETHANE	5	ND	ND	ND	ND	ND
, 2-DICHLOROETHANE	1	ND	ND	ND	ND	ND
1-DICHLOROETHYLENE	5	ND	ND	ND	ND	ND
, 2-DICHLOROPROPANE	10	ND	ND	ND	ND	ND
3-DICHLOROPROPYLENE	5	ND	ND	מא	ND	ND
THYL BENZENE	5	ND	ND	ND	ND	ND
ETHYL BROMIDE	10	ND	ND	ND	ND	ND
ETHYL CHLORIDE	10	ND	ND	ND	ND	ND
ETHYLENE CHLORIDE	5	ND	ND	ND	10	6
, 1, 2, 2-TETRACHLOROETHANE	10	ND	ND	ND	ND	ND
ETRACHLOROETHYLENE	5	ND	ŒN	ND	ND	ND
OLUENE	5	ND	מא	ND	ND	ND
, 2-TRANS-DICHLOROETHYLENE	5	ND	ND	DM	ND	ND
, 1, 1-TRICHLOROETHANE	5	ND	ND	ND	ND	ND
, 1, 2-TRICHLOROETHANE	5	ND	ND	מא	ND	ND
RICHLOROETHYLENE	5	ND	ND	ND	ND	ND
RICHLOROFLUOROMETHANE	5	ND	ND	ND	ND	ND
INYL CHLORIDE	10	ND	ND	ND	ND	ND
URROGATE COMPOUNDS		PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
		RECVRY	RECVRY	RECVRY	RECVRY	RECVRY
			22222	*******	*******	2222
, 2-DICHLORGETHANE-D4		97	98	99	87	94
OLUENE-D8		89	87	85	104	98
-BFB		93	90	96	122	801

REPORT OF ANALYSIS - PAGE 2

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

	DETECTION	i				
VOA COMPOUND	LIMITS	D-91	D-92	I-59	I-66	D-81
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
	5	ND	ND	ND	ND	ND
BENZENE	_				• • •	
BROMOFORM	10	ND	ND	פא	ND	ND
CARBON TETRACHLORIDE	5	ND	ND	ND NZ	ND	ND
CHLOROBENZENE	5	ND	ND	ND T	ND	ND
CHLORODIBROMOMETHANE	5	ND	ND	ND	ND 17	ND
CHLOROETHANE	10	ND	ND	ND	ND	ND
2-CHLORDETHYLVINYL ETHER	10	ND	ND	ND	ND	ND
CHLOROFORM	5	ND	ND	ON	ND	ND
DICHLOROBROMOMETHANE	5	ND	ND	ND	ND	ND
1, 1-DICHLOROETHANE	5	ND	ND	ND	ND	ND
1,2-DICHLOROETHANE	1	ND	ND	MD	ND	ND
1, 1-DICHLOROETHYLENE	5	ND	ND	ND ·	ND	ND
1,2-DICHLOROPROPANE	10	מא	ND .	ND	ND	מא
1,3-DICHLOROPROPYLENE	5	ND	ND	ND	ND CDA	ND
ethyl benzene	5	ND	ND	ND	ND	ND
METHYL BROWLDE	10	ND	ND	ND	ND	מא
METHYL CHLORIDE	10	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	ND	ND	7	ND	ND
1,1,2,2-TETRACHLOROETHANE	10	ND	ND	ND	ND	ND
TETRACHLOROETHYLENE	5	ND	NI)	ND	ND	ND
TOLUENE	5	ND	ND	ND	ND	ND
1,2-TRANS-DICHLOROETHYLENE	5	ND	ND	ND	ND	ND
1, 1, 1-TRICHLORGETHANE	5	ND	ND	ND	ND	ND
1, 1, 2-TRICHLOROETHANE	5	מא	ND	ND	ND	ND
TRICHLOROETHYLENE	5	ND	ND	ND	ND	ND
TRICHLOROFLUOROMETHANE	5	ND	ND	ND	ND	ND
VINYL CHLORIDE	10	מא	ND	ND	ND	ND
SURROGATE COMPOUNDS		PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
eamoutte varrouwe		RECVRY	RECVRY	RECVRY	RECVRY	RECVRY
******		RECORT	WECAVI			RECANI
1, 2-DICHLOROETHANE-D4		100	92	35	92	91
TOLUENE-D8		103	95	105	105	103
		116	110	106	108	105

ND = None Detected.

REPORT OF ANALYSIS - PAGE 3

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

	DETECTION					
VOA COMPOUND	LIMITS	S-82	S-84	D-85	D-87	D-88
	(ug/1)	(ug/l)	(ug/1)	(ug/1)	(ug/l)	(ug/1)
BENZENE	5	ND	ND	ND	ND	מא
BRONDFORM	10	ND	ND	ND	ND	ND
CARBON TETRACHLORIDE	5	ND	ND	ND	ND	МD
CHLOROBENZENE	5	ND	ND	ND	ND	ND
CHLORODIBROMONETHANE	5	ND	ND	ND	ND	ND
CHLORGETHANE	10	ND	ND	ND	ND	ND
2-CHLOROETHYLVINYL ETHER	10	ND	ND	ND	ND	ND
CHILOROFORM	5	ND	ND	ND	ND	ND
DICHLOROBROMOMETHANE	5	ND	ND	ND	ND	ND
1,1-DICHLOROETHANE	5	ND	ND	ND	ND	ND
1,2-DICHLORGETHANE	1	ND	ND	ND	ND	ND
1,1-DICHLOROETHYLENE	5	ND	ND	ND	ND	ND
1,2-DICHLOROPROPANE	10	ND CIN	ND	ND	ND	ND
1,3-DICHLOROPROPYLENE	5	ND	ND	Q N	ND	ND
ETHYL BENZENE	5	ND	ND	ND	ND	ND
METHYL BROWIDE	10	ND	ND	ND	ND	ND
METHYL CHLORIDE	10	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	ND	ND	ND	ND	ND
1, 1, 2, 2-TETRACHLOROETHANE	10	ND	ND	ND	ND	ND
TETRACHLOROETHYLENE	5	ND	ND	ND	ND	ND
TOLLIENE	5	ND	ND	ND	ND	ND
1,2-TRANS-DICHLOROETHYLENE	5	ND	ND	ND	ND	ND
1,1,1-TRICHLOROETHANE	, 5	ND ON	ND	ND	ND	ND
1, 1, 2-TRICHLOROETHANE	5	ND	ND	ND	ND	ND
TRICHLOROETHYLENE	5	ND	ND	ND	ND	ND
TRICHLOROFLUOROMETHANE	5	ND	ND	ND	מא	ND
VINYL CHLORIDE	10	ND	מא	ND	ND	ND
SURROGATE COMPOUNDS		PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
		RECVRY	RECVRY	RECVRY	RECVRY	RECVRY
1,2-DICHLOROETHANE-D4		91	90	87	85	87
TOLUENE-D8		105	105	106	108	104
p-BFB		109	107	110	111	110

ND = None Detected.

REPORT OF ANALYSIS - PAGE 4

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

	DETECTION					
VOA COMPOUND	LIMITS	D-93	D-94	D-95	L.BLK.	L.BLK.
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
12082R111113		=======================================	**********	322222	======	=======
BENZENE	5	ND	ND	ND	ND	ND
BROMOFORM	10	ND	ND	ND	ND	ND
CARBON TETRACHLORIDE	5	שא	ND	ND	ND	ND
CHLOROBENZENE	5	ΝĐ	ND	ND	ND	ND
CHLORODIBROMOMETHANE	5	ND.	ND	ND	ND	ND
CHLOROETHANE	10	ND	ND	ND	ND	ND
2-CHLOROETHYLVINYL ETHER	10	ND	ND	ND	MD	ND
CHLOROFORM	5	ND	ND	ND	ND	ND
DICHLOROBROMOMETHANE	5	ND	MD	ND	ND	ND
1, 1-DICHLOROETHANE	5	ND	ND	ND	ND	ND
1,2-DICHLORGETHANE	1	ND	ND	ДИ	ND	ND
1, 1-DICHLOROETHYLENE	5	ND	ND	ND	ND	ND
1,2-DICHLOROPROPANE	10	ND	ND	ND	ND	ND
1,3-DICHLOROPROPYLENE	5	ND	ND	ND	ND	ND
ethyl benzene	5	ND	סא	ND	NO	ND
METHYL BROWIDE	10	ND	ND	ND	ND	ND
METHYL CHLORIDE	10	ND	ND	ND	ND	ND
METHYLENE CHLORIDE	5	ND	ND	ND	17	15
1,1,2,2-TETRACHLOROETHANE	10	ND .	ND	ND	ND	ND
TETRACHLOROETHYLENE	5	ND	ND	ND	ND	ND
TOLUENE	5	ND	ND	ND	ND	ND
1,2-TRANS-DICHLOROETHYLENE	5	ND	ND	ND	ND	ND
1, 1, 1-TRICHLOROETHANE	5	ND	ND	ND	ND	ND
1, 1, 2-TRICHLOROETHANE	5	ND	ND	ND	ND	ND
TRICHLOROETHYLENE	5	ND	ND	ND	ND	ND
TRICHLOROFLUOROMETHANE	5	ND	ND	ND	ND	ND
VINYL CHLORIDE	10	ND	MD	ND	ND	ND
SURROSATE COMPOUNDS		PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
		RECVRY	RECVRY	RECVRY	RECVRY	RECVRY
		222222		2222222	522222	
1,2-DICHLORDETHANE-D4		86	86	88	96	98
•		106	102	102	93	95
TOLUENE-D8		100	IVE	100		J U

ND = None Detected.

REPORT OF ANALYSIS - PAGE 5

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

ND = Not Detected

3060-00377

	DETECTION	1				
ACID COMPOUNDS	LIMITS	S-51	S-80	D-83	D-89	D-90
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
		=======	******		======	223 92 22
2-CHLOROPHENOL	10	ND	ND	ND	ND	ND
2, 4~DICHLOROPHENOL	10	ND	ND	ND	ND	ND
2,4-DIMETHYLPHENOL	10	ND	ND	ND	ND	ND
4, 6-DINITRO-o-CRESOL	20	ND	ND	ND	ND	ND
2,4-DINITROPHENOL	50	ND	ND	ND	ND	ND
2-NITROPHENOL	20	ND	ND	ND	ND	ND
4-NITROPHENOL	50	ND	ND	ND	ND	ND
p-CHLORO-s-CRESOL	10	ND	ND	ND	ND	ND
PENTACHLOROPHENOL	10	ND	ND	ND	ND	ND
PHENOL	10	ND	ND	ND	ND	ND
2, 4, 6-TRICHLOROPHENOL	10	ND	MD	ND	מא	ND
		PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
SURROGATE COMPOUNDS		RECVRY	RECVRY	RECVRY	RECURY	RECVRY
**********		=======	*******	=======		322222
2-F-PHENOL		59	45	57	39	104
PHENOL-D6		48	37	50	31	43
2,4,6-TRIBROMOPHENOL		84	75	78	77	86
	DETECTION					
	LIMITS	S-51	S-80	D-83	D-89	D-90
BASE/NEUTRAL COMPOUNDS	(uq/1)	(ug/1)	(ug/l)	(ug/l)	(ug/1)	(ug/1)
SHOE/NEUTRAL CUMPOUNUS	**************************************	**************************************		222222		*******
acenaphthene	10	ND	ND	ND	ND	ND
acenaphthylen e	10	ND	ND	ND	ND	ND
anthracene	10	ND	ND	ND	ND	ND
BENZO (a) ANTHRACENE	10	ND	ND	ND	ND	ND
			1 PM	ND	ND	ND
BENZO(a) PYRENE	10	ND	ND	140	140	• • • •
BENZO (a) PYRENE 3, 4-BENZOFLUORANTHENE	10 10	ND ND	עא D	ND	ND	ND
						• • • •
3, 4-BENZOFLUORANTHENE	10	ND	ND	ND	ND	ND

REPORT OF ANALYSIS - PAGE 6

CLIENT: BURNS AND McDONNELL

P. C. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

	DETECTION	1				
BASE/NEUTRAL COMPOUNDS	LIMITS	S-51	S-80	D-83	D-89	D-90
CONTO	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
*************	=======	2702222	2020253	222222	=======	
BIS(2-CHLOROETHYL)ETHER	10	ND	ND	ND	ND	מא
BIS (2-CHLOROISOPROPYL) ETHER		מא	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	10	ND	ND	מא	25	ND
4-BROMOPHENYL PHENYL ETHER	10	ND	ND	ND	ND	ND
BUTYL BENZYL PHTHALATE	10	ND	ND	ND	ND	ND
2-CHLORONAPHTHALENE	10	MD	ND	ND	ND	ND
4-CHLOROPHENYL PHENYL ETHER	10	ND	ND	ND	ND	ΝD
CHRYSENE	10	ND	ND	ND	ND	ND
DIBENZO(a,h)ANTHRACENE	10	ND	ND	ND	ND	ND
1,2-DICHLOROBENZENE	10	ON	ND	ND	ND	МĎ
1,3-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
1, 4-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
3, 3'-DICHLOROBENZIDINE	20	ND	ND	ND	ND	ND
DIETHYL PHTHALATE	10	ND	ND	ND	ND	ND
DIMETHYL PHTHALATE	10	ND	ND	ND	ND	ND
DI-n-BUTYL PHTHALATE	10	ND	ND	ND	ND	ND
2,4-DINITROTOLUENE	10	ND	ND	ND	ND	ND
2,6-DINITROTOLUENE	10	ND	ND	ND	ND	ND
DI-n-OCTYL PHTHALATE	10	DI	ND	ND	ND	ND
BENZO (b) FLUORANTHENE	10	ND	ND	ND	ND	ND
1,2-DIPHENYLHYDRAZINE	20	ND	ND	ND	ND	מא
FLUORANTHENE	10	ND	ND	ND	ND	ND
FLUORENE	10	ND	ND	מא	ND	ND
HEXACHLOROBENZENE	10	מא	ND	ND	ND	ND
HEXACHLOROBUTADIENE	10	ND	ND	ND	מא	ND
HEXACHLOROCYCLOPENTADIENE	10	ND	ND	ND	ND	ND
HEXACHLORGETHANE	10	ND	ND	ND	ND	ND
INDENO(1, 2, 3-cd) PYRENE	10	ND	ND	ND	מא	ND
ISOPHORONE	10	ND	ND	ND	ND	ND
NAPHTHALENE	10	ND	ND	ND	ND	ND
NITROBENZENE	10	ND	ND	ND	ND	ND
N-NITROSODI-n-PROPYLAMINE	10	NO	ND	ND	ND	ND
N-NITROSODIPHENYLAMINE	10	ND	ИD	ND	ND	ND
PHENANTHRENE	10	ND	ND	ND	ND	ND
PYRENE	10	ND	ND	ND	ND	ND
1, 2, 4-TRICHLOROBENZENE	10	ND	ND	ND	ND	ND
ND = Not Detected		•				
IN ITO DETECTED						

PAGE 6 OF 19

REPORT OF ANALYSIS - PAGE 7

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

BASE/NEUTRAL SURROGATE COMPOUNDS		PERCENT RECVRY	PERCENT RECVRY	RECVRY	PERCENT RECVRY	RECVRY
NITROBENZENE-D5 2-FLUOROBIPHENYL TERPHENYL-D14		59 67 98	55 62 73	66 86 94	61 72 90	43 48 107
	DETECTION	1				
PESTICIDES	LIMITS	S-51	S-80	D-83	D-89	D-90
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/l)
========	386660	=======	======	2222223	******	2222422
ALDRIN	0.0018	ND	ND	ND	ND	ND
ALPHA-BHC	0.0015	ND	ND	ND	ND	ND
BETA-BHC	0.0023	ND	ND	ND	ND	ND
GAMMA-BHC (LINDANE)	0.0019	ND	ND	ND	ND	ND
DELTA-BHC	0.0024	ND	ND	ND	ND	ND
CHLORDANE	0.0148	ND	ND	ND	ND	ND
4, 4' -DDT	0.0028	ND	ND	ND	ND	ND
4, 4" -DDE	0.0015	ND	ND	ND	ND	ND
4, 4' -DDD	0.0015	ND	ND	ND	ND CIN	ND
DIELDRIN	0.0019	ND	ND	ND	ND	ND
alpha-endosulfan	0.0027	ND	ND	ND	ND	ND
BETA-ENDOSULFAN	0.0017	ND	ND	ND	ND	ND
endosulfan sulfate	0.0021	ND	ND	ND	ND	ND
ENDRIN	0.0022	ND	ND	ND	ND	ND
ENDRIN ALDEHYDE	0.0026	ND	ND	ND	ND	ND
HEPTACHLOR	0.0019	ND	ND	ND	ND	ND
HEPTACHLOR EPOXIDE	0.0019	מא	ND	ND	ND	ND
PCB-1242	0.036	ND	ND	ND	ND	ND
PCB-1254	0.013	ND	ND	ND	ND	ND
PCB-1221	0.133	ND	ND	ND	ND	ND
PCB-1232	0.062	ND	ND	ND	ND	ND
PCB-1248	0.023	ND	ND	ND	ND	ND
PCB-1260	0.012	ND	מא	ND	ND	ND
PCB-1016	0.034	ND	ND	ND	ND	ND
TOXAPHENE	0. 437	ND CIN	ND	מא	ND	QN.

ND = Not Detected

REPORT OF ANALYSIS - PAGE 8

CLIENT: BURNS AND McDONNELL

REVISED 8/19/86

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

2-CHLOROPHENOL 10 ND ND 2, 4-DICHLOROPHENOL 10 ND ND 2, 4-DIMETHYLPHENOL 10 ND ND ND 4, 6-DINITRO-o-CRESOL 20 ND ND	ND DN ON	ND ND	ND
2,4-DIMETHYLPHENOL 10 ND ND 4,6-DINITRO-o-CRESOL 20 ND ND		ND	
2,4-DIMETHYLPHENOL 10 NO NO NO NO NO NO NO NO NO NO NO NO NO	NT	144	ND
,, = =	עודי	ND	ND
·	ND	ND	ND
2,4-DINITROPHENOL 50 ND ND	ND	ND	ND
2-NITROPHENOL 20 ND ND	ND	ND	ND
4-NITROPHENOL 50 ND ND	ND	ND	ND
p-CHLORG-M-CRESOL 10 ND ND	ND	ND	ND
PENTACHLOROPHENOL 10 ND ND	ND	ND	ND
PHENOL 10 NO NO	ND	ND	ND
2, 4, 6-TRICHLOROPHENOL 10 ND ND	ND	ND	ND
PERCENT PERCEN	IT PERCENT	PERCENT	PERCENT
SURROGATE COMPOUNDS RECVRY RECVRY	RECVRY	RECVRY	RECVRY
2-F-PHENOL 31 46	48	45	29
PHENOL-D6 26 34	44	38	22
2, 4, 6-TRIBROMOPHENOL 38 55	64	7 9	29
DETECTION			
LIMITS D-91 D-92	1-59	1-66	D-81
BASE/NEUTRAL COMPOUNDS (ug/1) (ug/1) (ug/1)	-	(ug/1)	(ug/1)
ACENAPHTHENE 10 NO NO	======= ON	====== QN	-=====
ACENAPHTHYLENE 10 ND ND	ND	ND	ND
ANTHRACENE 10 ND ND	ND	ND	ND
	ND	ND	ND
BENZO (a) ANTHRACENE 10 ND ND			h 1980
BENZO(a) ANTHRACENE 10 ND ND BENZO(a) PYRENE 10 ND ND	ND	ND	ND
	ND ND	ND ND	ND ND
BENZO(a) PYRENE 10 ND ND			-
BENZO (a) PYRENE 10 ND ND 3, 4-BENZOFLUORANTHENE 10 ND ND	ND	ND	ND

ND = Not Detected

John- J. Comples

PAGE 8 DF 19

REPORT OF ANALYSIS - PAGE 9

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

BASE/NEUTRAL COMPOUNDS CONT'D	DETECTION LIMITS (ug/1)	D-91 (ug/1)	D-92 (ug/1)	I-59 (ug/1)	I-66 (ug/1)	D-81 (ug/1)
BIS(2-CHLOROETHYL)ETHER	10	ND	ND	ND	מא	ND
BIS (2-CHLOROISOPROPYL) ETHER	10	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	10	ND	ND	ND	· ND	ND
4-BROMOPHENYL PHENYL ETHER	10	ND	ND	ND	ND	ND
BUTYL BENZYL PHTHALATE	10	ND	ND	ND	ND	ND
2-CHLORONAPHTHALENE	10	ND	ND	ND	ND	ND
4-CHLOROPHENYL PHENYL ETHER	10	ND	ND	ND	ND	ND
CHRYSENE	10	ND	ND	ND	ND	ND
DIBENZO (a, h) ANTHRACENE	10	ND	ND	ND	ND	ND
1, 2-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
1,3-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
1,4-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
3, 3' -DICHLOROBENZIDINE	20	ND	ND	ND	ND	ND
DIETHYL PHTHALATE	10	ND	ND	ND	ND	ND
DIMETHYL PHTHALATE	10	ND	ND	ND	ND	ND
DI-n-BUTYL PHTHALATE	10	ND	ND	ИD	ND	ND
2,4-DINITROTOLUENE	10	ND	ND	ND	ND	ND
2, 6-DINITROTOLUENE	10	ND	ND	ND	ND	ΝĐ
DI-n-OCTYL PHTHALATE	10	D	ND	DИ	ND	ND
BENZO(b) FLUORANTHENE	10	ND	ND	ND	ND	ND
1,2-DIPHENYLHYDRAZINE	20	ND	ND	ND	ND	ND
FLUORANTHENE	10	ND	ND	ND	ND	ND
FLUORENE	10	ND	ND	ND	ND	ND
HEXACHLOROBENZENE	10	ND	ND	ND	ND	ND
HEXACHLOROBUTADIENE	10	ND	ND	ND	ND	ND
HEXACHLOROCYCLOPENTADIENE	10	ND	ND	ND	ND	ND
HEXACHLOROETHANE	10	ND	ND	ND	ND	ND
INDENO(1, 2, 3-cd) PYRENE	10	ND	ND	ND	ND	ND
ISOPHORONE	10	ND	ND	ND	ND	ND
NAPHTHALENE	10	ND	ND	ND	ND	ND
NITROBENZENE	10	ND	ND	ND	מא	ND
N-NITROSODI-n-PROPYLAMINE	10	מא	ND	ND	ND	ND
N-NITROSODIPHENYLAMINE	10	ND	ND :	ND	ND	ND
PHENANTHRENE	10	ND	ND	QN	ND	ND
PYRENE	10	ND	ND	MD	ND	ND
1,2,4-TRICHLOROBENZENE ND = Not Detected	10	ND	ND	ND	ND	ND

REPORT OF ANALYSIS - PAGE 10

PERCENT PERCENT PERCENT PERCENT

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

BASE/NEUTRAL

SURROGATE COMPOUNDS		RECVRY	RECVRY	RECVRY	RECVRY	RECVRY
NITROBENZENE-DS		30	51	59	58	44
2-FLUOROBIPHENYL		<i>3</i> 6	60	73	71	48
TERPHENYL-D14		78	73	81	87	99
DEST. 0.1000	DETECTION					
PESTICIDES	LIMITS	D-91	D-92	I-59	1-66	D-81
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
ALDRIN	0.0018	ND	ND	מא	ND	ND
ALPHA-BHC	0.0015	ND	ND	ND	ND	ND
Beta-BHC	0.0023	ND	ND	ND	ND	ND
GAMMA-BHC (LINDAME)	0.0019	ND	ND	ND	מא	ND
Delta-BHC	0.0024	מא	ND	ND	ND	ND
CHLORDANE	0.0148	ND	ND	ND	ND	ND
4, 4° -DDT	0.0028	ND	ND	ND	ND	ND
4, 4' -DDE	0.0015	ND	ND	ND	ND	ND
4, 4' -DDD	0.0015	ND	ND	ND	ND	ND
DIELDRIN	0.0019	ND	ND	ND	ND	ND
ALPHA-ENDOSULFAN	0.0027	ND	ND	ND	ND	ND
BETA-ENDOSULFAN	0.0017	ND	ND	ND	ND	ND
endosulfan sulfate	0.0021	מא	ND	ND	ND	ND
ENDRIN	0.0022	ND	ND	ND	ND	ND
ENDRIN ALDEHYDE	0.0026	ND	ND	ND	ND	ND
HEPTACHLOR	0.0019	מא	ND	МD	ND	ND
HEPTACHLOR EPOXIDE	0.0019	MD	ON	ИD	ND	ND
PCB-1242	0.036	ND	ND	ND	מא	ND
PCB-1254	0.013	ND	ИD	ND	ND	ND
PCB-1221	0.133	ND	ND	ND	ND	ND
PCB-1232	0.062	ND	ND	מא	ND	ND
PCB-1248	0.023	ND	ND	ND	ΝD	מא
PCB-1260	0.012	D	ND	ND	ND	ND
PCB-1016	0.034	ND	ND	ND	ND	ND
TOXAPHENE	0.437	ND)	ND	ND	ND	ND

ND = Not Detected

REPORT OF ANALYSIS - PAGE 11

CLIENT: BURNS AND McDONNELL

REVISED 8/19/86

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

	DETECTION	-				
ACID COMPOUNDS	LIMITS	S-82	S-84	D-85	D-87	D-88
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
***************************************	*******	********			*******	25.0255
2-CHLOROPHENOL	10	ФИ	מא	ND	ND	ND
2, 4-DICHLOROPHENOL	10	ND	ND	ND	ND	ND
2,4-DIMETHYLPHENOL	10	ND	ND	ND	ND	ND
4,6-DINITRO-o-CRESOL	20	ND	ND	ND	ND	ND
2,4-DINITROPHENOL	50	ND	ND	ND	ND	ND
2-NITROPHENOL	20	ND	ND	ND	ND	ND
4-NITROPHENOL	50	CIN	ND	ND	ND	ND
p-CHLORO-s-CRESOL	10	ND	ND	ND	ND	ND
PENTACHLOROPHENOL	10	ND	D	ND	ND	ND
PHENOL	10	ND	ND	ND	ND	ND
2, 4, 6-TRICHLOROPHENOL	10	ON	ND	ND	ND	ND
		PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
SURROGATE COMPOUNDS		RECVRY	RECVRY	RECVRY	RECVRY	RECVRY
2-F-PHENOL		22	35	30	42	30
PHENOL-D6		21	28	27	36	23
2,4,6-TRIBROMOPHENOL		34	43	38	71	36
	DETECTION					
	LIMITS	S-82	S-84	D-85	D-87	D-88
BASE/NEUTRAL COMPOUNDS	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
	3353533	3233333		222222		======
ACENAPHTHENE	10	ND	ND	ND	ND	ND
ACENAPHTHYLENE	10	ND	ND	ND	ND	ND
ANTHRACENE	10	ND TO	ND	ND	ND	ND
BENZO (a) ANTHRACENE	10	ND	ND	ND	ND	ND
BENZO (a) PYRENE	10	ND	ND	ND	ND	ND
3, 4-BENZOFLUORANTHENE	10	ND	ND	ND	ND	ND
BENZO (ghi) PERYLENE	10	ND	ND	ND	ND	ND
BENZO (k) FLUORANTHENE	10	ND	ND	ND	ND	ND
BIS(2-CHLOROETHOXY)METHANE	10	ND	ИD	ND	ND	ND

ND = Not Detected

John J. Course

PAGE 11 DF 19

REPORT OF ANALYSIS - PAGE 12

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

1	DETECTION	}				
BASE/NEUTRAL COMPOUNDS	LIMITS	S-82	S-84	D-85	D-87	D-88
CONTID	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
343-00-32-00-36-38-28		======	======	222222	3352223	======
BIS(2-CHLOROETHYL)ETHER	10	ND	ND	ND	ND	ND
BIS(2-CHLOROISOPROPYL)ETHER	10	ND	ND	ND	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	10	.ND	ND	ND	ND	ND
4-BROMOPHENYL PHENYL ETHER	10	ND	ND	ND	ND	ND
BUTYL BENZYL PHTHALATE	10	ND	ND	ND	NO	ND
2-CHLORONAPHTHALENE	10	ND	ND	ND	ND	ND
4-CHLOROPHENYL PHENYL ETHER	10	ND	ND	ND	ND	D
CHRYSENE	10	ND	ND	ИD	ND	ND
DIBENZO(a, h) ANTHRACENE	10	ND	ND	ND	ND	ND
1,2-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
1,3-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
1,4-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
3, 3' -DICHLOROBENZIDINE	20	ND	CIA	ND	ND	ND
DIETHYL PHTHALATE	10	ND	ND	ND	ND	ND
DIMETHYL PHTHALATE	10	ND	ND	ND	ND	ND
DI-n-BUTYL PHTHALATE	10	ND	ND	ND	ND	ND
2,4-DINITROTOLUENE	10	ND	ND	ND	ND	ND
2,6-DINITROTOLUENE	10	ND	ND	ND	ND	ND
DI-n-OCTYL PHTHALATE	10	ND	ND	ND	ND	QN
BENZO (b) FLUORANTHENE	10	ND	ND	ND	ND	ND
1,2-DIPHENYLHYDRAZINE	20	ND	ND	ND	ND	ND
FLUORANTHENE	10	ND	ND	מא	ND	MD
FLUORENE	10	ND	ND	ND .	ND	מא
HEXACHLOROBENZENE	10	ND	ND	ND	ND	ND
HEXACHLOROBUTADIENE	10	ND	ND	ND	ND	ON
HEXACHLOROCYCLOPENTADIENE	10	ND	ND	ND	ND	ND
HEXACHLOROETHANE	10	ND	ИĎ	ND	ND	ND
INDENO(1, 2, 3-cd) PYRENE	10	ND	ND	ND	ND	ND
ISOPHORONE	10	ND	DM	ND	ND	ND
NAPHTHALENE	10	ND	ND	ND	ND	СИ
NITROBENZENE	10	ND	ND	ND	ND	ND
N-NITROSODI-n-PROPYLAMINE	10	ND	ND	ND	ND	ND
N-NITROSODIPHENYLAMINE	10	ND	ND	ND	ND	ND
PHENANTHRENE	10	ND	ND	ND	ND	ND
PYRENE	10	ND	ND	ON	ND	ND
1, 2, 4-TRICHLOROBENZENE	10	ND	ND	ON	ND	ND
ND = Not Detected						

REPORT OF ANALYSIS - PAGE 13

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

BASE/NEUTRAL SURROGATE COMPOUNDS		PERCENT	PERCENT	PERCENT	PERCENT	PERCENT
NITROBENZENE-DS 2-FLUOROBIPHENYL TERPHENYL-D14		72 79 96	72 73 85	39 58 91	73 77 92	84 87 91
	DETECTION	ı				
PESTICIDES	LIMITS	5-82	5-84	D-85	D-87	D-88
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)
ALDRIN	0.0018	ND	ND	ND	ND	ND ND
ALPHA-BHC	0.0015	ND	שא	ND	ND	ND
BETA-BHC	0.0023	ND	ND	ND	ND	ND CIN
GAMMA-BHC (LINDAME)	0.0019	ND	ND	ND	ND	ND
DELTA-BHC	0.0024	ND OM	ND	מא	ND	ND
CHLORDANE	0.0148	ND	ND	ON.	ND	ND
4, 4' -DDT	0.0028	ND	ND	ND	ND	ND
4, 4' -DDE	0.0015	ND	ND	ND	ND	ND
4, 4' -DDD	0.0015	ND	ND	ND	ND	ND
DIELDRIN	0,0019	ND	ND	ND	ND	ND
ALPHA-ENDOSULFAN	0.0027	ND	ND	ND	ND	ND
BETA-ENDOSULFAN	0.0017	ND	ND	ND	ND	ND
endosulfan sulfate	0.0021	ND	ND	ND	ND	ND
ENDRIN	0.0022	ND	ND	ND	ND	ND
ENDRIN ALDEHYDE	0.0026	ND	ΝD	ND	ND	ND
HEPTACHLOR	0.0019	ND	ND	ND	ND	ΝĐ
HEPTACHLOR EPOXIDE	0.0019	ND	ND	ND	ND	ND
PCB-1242	0.036	ND	ND	ND	ND	ND
PCB-1254	0.013	ND	ND	ND	ND	ND
PCB-1221	0.133	ND	ND	MD	ND	ND
PCB-1232	0.062	ND	מא	ND	ND	ND
PCB-1248	0.023	ND	ND	ND	ND	ND
PCB-1260	0.012	ND	ND	ND	ND	ND
PCB-1016	0.034	ND	ND	ND	NĐ	ND
TOXAPHENE	0.437	ND	ND	ND	ND	ND

ND = Not Detected

REPORT OF ANALYSIS - PAGE 14

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

ACID COMPOUNDS	DETECTION LIMITS (ug/1)	D-93 (ug/1)	D-94 (ug/1)	D-95 (ug/1)	L. BLK. (ug/1)	L. BLK. (ug/1)
2-CHLOROPHENOL	10	ND	ND	ND	ND	ND
2, 4-DICHLOROPHENOL	10	ND	ND	מא	ND	ND
2,4-DIMETHYLPHENOL	10	ND	ND	ND	ND	ND
4,6-DINITRO-o-CRESOL	20	ND	ND	ND	ND	ND
2,4-DINITROPHENOL	50	ND	מא	ND	ND	ND
2-NITROPHENOL	20	ND	ND	ND	ND	ND
4-NITROPHENOL	50	ND	ND	מא	ND	ND
p-CHLORO-=-CRESOL	10	ND	ND	ND	ND	ND
PENTACHLOROPHENOL	10	ND	ND	ND	ND	ND
PHENOL	10	ND	ND	ND	ND	ND
2,4,6-TRICHLOROPHENOL	10	ND	ND	ND	ND	ND
SURROGATE COMPOUNDS		PERCENT RECVRY	PERCENT RECVRY	PERCENT RECVRY	PERCENT RECVRY	PERCEN RECVRY
::::::::::::::::::::::::::::::::::::::		333 33 33	=======	======	======	22222
2-F-PHENOL		63	49	59	61	56
PHENOL-D6		53	39	44	50	46
2,4,6-TRIBROMOPHENOL		92	87	92	93	93
• •		<i>7</i> 2	01	<i>,</i>		
	DETECTION		67	,,		
	DETECTION LIMITS		D-94	D-95	L.BLK.	L. BLK.
Base/Neutral compounds		D-93	-	D-95	L. BLK. (ug/1)	L. BLK. (ug/1)
	LIMITS	- - -	D-94			
	LIMITS (ug/1)	D-93 (ug/1)	D-94	D-95		
Base/Neutral compounds	LIMITS (ug/1)	D-93 (ug/1)	D-94 (ug/1)	D-95 (ug/1)	(ug/1)	(ug/1)
Base/Neutral Compounds	LIMITS (ug/1)	D-93 (ug/1) 	D-94 (ug/1)	D-95 (ug/1)	(ug/1) ======= ND	(ug/1)
Base/Neutral Compounds	LIMITS (ug/l) ====== 10 10	D-93 (ug/1) 	D-94 (ug/1) ====== ND ND	D-95 (ug/1) ====== ND ND	(ug/1) ND ND	(ug/1) ND ND
BASE/NEUTRAL COMPOUNDS	LIMITS (ug/l) ======= 10 10 10	D-93 (ug/1) ND ND	D-94 (ug/1) ====== ND ND ND	D-95 (ug/1) ====== ND ND ND	(ug/1) ND ND ND ND	(ug/1) ND ND ND ND
BASE/NEUTRAL COMPOUNDS	LIMITS (ug/1) 10 10 10 10	D-93 (ug/1) ND ND ND ND	D-94 (ug/1) ====== ND ND ND ND	D-95 (ug/1) ====== ND ND ND ND	(ug/1) ND ND ND ND ND ND	ND ND ND ND ND
BASE/NEUTRAL COMPOUNDS	10 10 10 10 10	D-93 (ug/1) ND ND ND ND	D-94 (ug/1) ND ND ND ND ND	D-95 (ug/1) ====== ND ND ND ND ND	(ug/1) ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND
BASE/NEUTRAL COMPOUNDS ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO (a) ANTHRACENE BENZO (a) PYRENE 3, 4-BENZOFLUORANTHENE	LIMITS (ug/1) 10 10 10 10 10 10	D-93 (ug/1) ND ND ND ND ND	D-94 (ug/1) ====== ND ND ND ND ND	D-95 (ug/1) ====== ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND

REPORT OF ANALYSIS - PAGE 15

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

BASE/NEUTRAL COMPOUNDS CONT'D	DETECTION LIMITS (ug/l)	V D-93 (ug/1)	D-94 (ug/1) ======	D-95 (ug/1)	L. BLK. (ug/1)	L. BLK. (ug/1)
BIS(2-CHLOROETHYL)ETHER	10	ND	ND	ND	ND	ND
BIS (2-CHLOROISOPROPYL) ETHER	10	ND	ND	מא	ND	ND
BIS(2-ETHYLHEXYL)PHTHALATE	10	ND	ND	ΝD	ND	ND
4-BROMOPHENYL PHENYL ETHER	10	ND	ND	ND -	ND	ND
BUTYL BENZYL PHTHALATE	10	ND	ND	ND	ND	ND
2-CHLORONAPHTHALENE	10	ND	ND	מא	ND	ND
4-CHLOROPHENYL PHENYL ETHER	10	ND	ND	ND	ND	ND
CHRYSENE	10	ND	ND	ND	ND	ND
DIBENZO (a, h) ANTHRACENE	10	ND	ND	ND	ND	ND
1, 2-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
1,3-DICHLOROBENZENE	10	ND	ND	ND	מא	ND
1,4-DICHLOROBENZENE	10	ND	ND	ND	ND	ND
3, 3' -DICHLOROBENZIDINE	20	ND	ФИ	ND	CIA	CM
DIETHYL PHTHALATE	10	ND	ND	ND	ND	ND
DIMETHYL PHTHALATE	10	MD	ND	ND	ND	ND
DI-n-BUTYL PHTHALATE	10	ND	ND	ND	ND	ND
2,4-DINITROTOLUENE	10	ND	ND	ND	ND	ND
2,6-DINITROTOLUENE	10	ND	ND	ND	ND	ND
DI-n-OCTYL PHTHALATE	10	ND	ND	ND	ND	ND
BENZO(6) FLUORANTHENE	10	ND	ND	ND	ND	ND
1,2-DIPHENYLHYDRAZINE	20	ND	ND	ND	ND	ND
FLUORANTHENE	10	ND	ND	ND	ND	ND
FLUORENE	10	ND	ND	ND	ND	D
HEXACHLOROBENZENE	10	ND	ND	ND	ND	ND
HEXACHLOROBUTADIENE	10	ND.	ND	ND	ND	D
HEXACHLOROCYCLOPENTADIENE	10	ND	ND	ND	ND	מא
HEXACHLOROETHANE	10	ND	ND	ND	ND	ND
INDENO(1, 2, 3-cd) PYRENE	10	ND	ND	ND	ND	ND
ISOPHORONE	10	ND	ND	ND	ND	ND
NAPHTHALENE	10	ND	ND	DM	ND	ND
NITROBENZENE	10	ND	ND	ND	ND	ND
N-NITROSODI-n-PROPYLAMINE	10	ND	מא	ND	ND	ND
N-NITROSODIPHENYLAMINE	10	DM	ND	ND	ND	ND
PHENANTHRENE	10	ND	ND	ND	ND	ND
Pyrene	10	ND	ND	ND	ND	ND
1,2,4-TRICHLOROBENZENE ND = Not Detected	10	ND	ND	DM	ND	ND

REPORT OF ANALYSIS - PAGE 16

CLIENT: BURNS AND MCDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

BASE/NEUTRAL SURROGATE COMPOUNDS		PERCENT RECVRY	PERCENT RECVRY	PERCENT RECVRY	PERCENT RECVRY	PERC RECV
NITROBENZENE-D5		77	71	54	68	53
2-FLUOROBIPHENYL		85	76	60	73	60
TERPHENYL-D14		92	90	81	85	79
	DETECTION	1				
PESTICIDES	LIMITS	D-93	D-94	D-95	L. BLK.	L. BL
	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/1)	(ug/
	*******	======	=======	*****	=======	===
ALDRIN	0.0018	ND	ND	מא	ND	N
ALPHA-BHC	0.0015	ND	ND	ND	ND	NI
BETA-BHC	0.0023	ND	ND	ND	ND	N
SAMMA-BHC (LINDAME)	0.0019	ND	ND	ND	ND	NE
DELTA-BHC	0.0024	ND	ND	ND	ND	NI
CHLORDANE	0.0148	ND	ПD	Œ	ND)	N
4, 4°-DDT	0.0028	ND	ND	ND	ND	NI
4, 4' -DDE	0.0015	ND	ND	ND	ND	N
4, 4' -DDD	0.0015	ND	ND	ND	ND	N
DIELDRIN	0.0019	ND	ND	ND	ND	N
ALPHA-ENDOSULFAN	0.0027	ND	ND	ND	ND	N
BETA-ENDOSULFAN	0.0017	ND	ND	ND	ND	N
ENDOSULFAN SULFATE	0.0021	ND	ND	ND	ND	N
ENDRIN	0.0022	ND	ND	ND	ND	N
ENDRIN ALDEHYDE	0.0026	ND.	ND	ND	ND	N
HEPTACHLOR	0.0019	ND	ND	ND	ND	N
HEPTACHLOR EPOXIDE	0.0019	ON	ND	ND	ND	N
PCB-1242	0.036	ND	מא	מא	ND	N
PCB-1254	0.013	ND	ND	ND	ND	N
PCB-1221	0.133	ND	ND	ND	ND	N
PCB-1232	0.062	ND	ND	ND	D	N
PCB-1248	0.023	ND	ND	ND	ND	N
PCB-1260	0.012	ND	ND	ND	ND	N
PCB-1016	0.034	ND	ND	- ND	ND	NI
TOXAPHENE	0.437	ND	ND	ND	ND	NI

ND = Not Detected

REPORT OF ANALYSIS - PAGE 17

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

GROUNGWATER	TOTAL	TOTAL
SAMPLE	CYANIDE	PHENOLS
	(ug/1)	(mg/l)
		50225555
S-51	₹5	(0.002
S-80	₹5	(0.002
D-83	₹5	(0.002
D-89	(5	(0.002
D-90	7	(0.002
D-91	(5	(0.002
D-92	₹5	(0.002
1-59	₹5	(0.002
1 -66	₹5	(0.002
D-81	₹ 5	(0.002
S-82	₹5	(0.002
S-84	₹5	(0.002
D-85	₹5	(0.002
D-87	₹5	(0.002
D-88	(5	(0.002
D-93	(5	(0.002
D-94	₹ 5	{ 0.002
D-95	(5	(0, 002

REPORT OF ANALYSIS - PAGE 18

CLIENT: SURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

REVISED JULY 31,1986

GROUNGWATER							
SAMPLE	Sb	As	Вe	Cd	Cr	Cu	Рb
	(mg/l)	([\gm:	([\pm)	(mg/l)	(mg/l)	(mg/1)	(mg/1)
========	======	553\$# 55	======	======	======	======	======
S-51	0.017	(0.002	(0.001	(0.001	(0.004	(0.004	(0.005
S-80 ·	0.029	(0.002	(0.001	(0.001	(0.004	0.005	(0.005
D-83	0.034	(0.002	(0.001	(0.001	(0.004	0.004	(0.005
D-89	0.026	(0.002	(0.001	(0.001	(0.004	(0.004	(0.005
D-90	0.008	(0.002	(0.001	(0.001	(0.004	0.007	(0.005
D-91	0.026	0.004	(0.001	(0.001	(0.004	0.01	0.013
D-92	0.020	(0,002	(0.001	(0.001	(0.004	0.009	(0.005
I-59	0.035	(0.002	(0.001	(0.001	(0.004	0.011	(0.005
I-66	0.013	(0.002	(0.001	(0.001	(0.004	0.009	(0.005
D-81	0.034	(0.002	(0.001	(0.001	(0.004	0.008	(0.005
S-82	0.040	(0.002	(0.001	(0.001	(0.004	0.04	(0.005
S-84	0.024	0.009	(0.001	0.001	(0.004	0.01	(0.005
D-85	0.025	0.008	(0.001	(0.001	(0.004	0.005	(0.005
D-87	0.021	(0.002	(0.001	(0.001	(0.004	0.011	(0.005
D-68	0.041	0.003	(0.001	(0.001	(0.004	0.007	(0.005
D-93	0.116	(0.002	(0.001	(0.001	(0.004	0.01	(0.005
D-94	0.022	(0.002	(0,001	(0.001	(0.004	0.004	0.007
D-95	0.011	0.006	(0.001	(0.001	(0.004	0.004	(0.005

Sb = Antimony; As = Arsenic; Be = Beryllium; Cd = Cadmium; Cr = Chromium Cu = Copper; Pb = Lead

ENVIRODYNE FNGINFERS

REPORT OF ANALYSIS - PAGE 19

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

3060-00377

REVISED JULY 31,1986

SROUNGHATER						
SAMPLE	Hg	Ni	Se	Ag	Tl	Zn
	(ug/1)	(mg/1)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
	=====		======	*****		
S-51	(0.2	(0.004	(0.002	0.002	0.005	2
5-80	⟨ 0.2	(0.004	(0.002	0.004	0.010	0.01
D-83	(0.2	0.011	(0.002	0.005	0.013	0.02
D-89	(0.2	0.007	(0.002	0.004	0.010	0.04
D-90	(0.2	0.007	(0.002	(0.002	0.005	(0.002
D-91	(0.2	0.024	(0.002	0.004	0.009	0.02
D-92	(0.2	0.019	(0.002	0.007	0.015	0.02
I-59	(0.2	0.02	(0.002	0.007	0.019	0.01
I-66	(0.2	(0.004	(0.002	0.003	0.009	0.01
D-81	(0.2	0.006	(0.002	0.005	0.012	0.02
S-82	(0.2	0.062	(0.002	0.006	0.016	0.03
5-84	(0.2	0.008	(0.002	0.004	0.007	0.03
D-85	(0.2	0.013	(0.002	0.005	0.009	0.01
D-87	(0.2	0.015	(0.002	0.006	0.013	0.01
D-88	(0.2	0.011	(0.002	0.005	0.009	0.04
D-93	(0.2	0.012	(0.002	0.004	0.027	(0.002
D-94	(0.2	(0.004	(0.002	0.003	0.008	0.01
D-95	(0.2	0.004	(0.002	0.003	0.008	0.07

Hg = Mercury; Ni = Nickel; Se = Selenium; Ag = Silver; Tl = Thallium Zn = Zinc

Attachment I "STANDARD CLAUSES" is included herein by reference.

APPROVED:

PAGE 19 OF 19

12161 Lackland Road, St. Louis, Missouri 63146 (314) 434-6960

REPORT OF ANALYSIS

CLIENT: BURNS AND McDONNELL

P.O. Box 173

Kansas City, Missouri 64141

ATTN: Ms. Mary Erio

REPORT DATE:

August 22,1986

SAMPLE ANALYZED: Lab Blank data from acid

extractable organics reruns.

DATE RECEIVED:

N/A

METHODS USED:

N/A

P.O. #:

PROJ. #: 3060-00377

	DETECTION	LAB	LAB
ACID COMPOUNDS	LIMITS	BLANK	Blank
	(ug/1)	(ug/1)	(ug/1)
********	======	======	======
2-CHLOROPHENOL	10	ND	ND
2,4-DICHLOROPHENOL	10	ND	ND
2,4-DIMETHYLPHENOL	10	ND	ND
4,6-DINITRO-c-CRESOL	20	ND	ND
2,4-DINITROPHENOL	50	ND	ND
2-NITROPHENOL	20	ND	ND
4-NITROPHENOL	50	ND	ΝD
p-CHLORO-m-CRESOL	10	ND	ND
PENTACHLOROPHENOL	10	ND	מא
PHENOL ·	10	ND	DM
2,4,6-TRICHLOROPHENOL	10	ND	מא
		PERCENT	PERCENT
SURROGATE COMPOUNDS		RECVRY	RECVRY
		======	

	PERCENT	PERCENT
SURROGATE COMPOUNDS	RECVRY	RECVRY
=======================================	======	=======
2-F-PHENOL	32	41
PHENOL-D6	26	33
2,4,6-TRIBROMOFHENOL	25	30

The lab blank data from the orininal acid/base-neutral analyses can be found on pages 14, 15, and 16 of our July 8,1986 report to you.

APPROVED:

PAGE 1 OF 1

ATTACHMENT I - STANDARD CLAUSES

ENVIRODYNE ENGINEERS, INC.

CLIENT: BURNS AND McDONNELL REPORT DATE: JULY 8,1986

The testing services provided herein have been performed, findings obtained, and reports prepared in accordance with generally accepted testing laboratory principles and practices. This warrenty is in lieu of all other warrenties, either expressed or implied.

These tests were conducted in accordance with the standards and procedures specified. Interpretations of the results should take into account that there is a generally recognized and accepted degree of error associated with these and all laboratory analytical tests.

These analyses have been made (tests performed) and report prepared based upon the specific sample(s) provided to us by the client or his/her representative for testing. We assume no responsibility for variations in quality, composition, appearance, performance, etc. or any other feature of similar subject matter produced, manufactured, fabricated, etc. by persons or under conditions over which we have no control.

Samples will not be held by the laboratory for more than 60 days after the date of receipt. Any extension of this time must be evidenced by written agreement between the laboratory and the client.

This REPORT OF ANALYSIS is furnished in strict confidence for the exclusive use of the client and his/her representatives, and no distribution of all or part of the report shall be made to third parties without the prior written approval of Envirodyne Engineers, Inc. (EEI).

GROSS ALPHA AND BETA MAY, 1986

Associated Post Office Box 117
Universities Oak Ridge, Tennessee 37831-0117

Manpower Education, Research, and Training Division

May 27, 1986

Dr. Germain LaRoche Uranium Fuel Licensing Branch Division of Fuel Cycle and Material Safety U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Subject: GROSS ALPHA AND GROSS BETA RESULTS - WEST LAKE LANDFILL WELLS

Dear Dr. LaRoche:

Enclosed are the results of our gross alpha and gross beta analyses, performed on 32 well water samples, collected May 7 and 8 at the West Lake Landfill site near St. Charles, Missouri. As can be noted, many of the samples exceed the 5 pCi/l gross alpha level requiring isotopic analyses. Therefore, analyses for Ra-226, Ra-228, isotopic uranium, and isotopic thorium have been initiated; results of these analyses will be available in about 3 weeks.

If you have any questions, please contact me at FTS 626-3305.

Sincerely,

bames D. Berger

Program Manager

Radiological Site Assessment Program

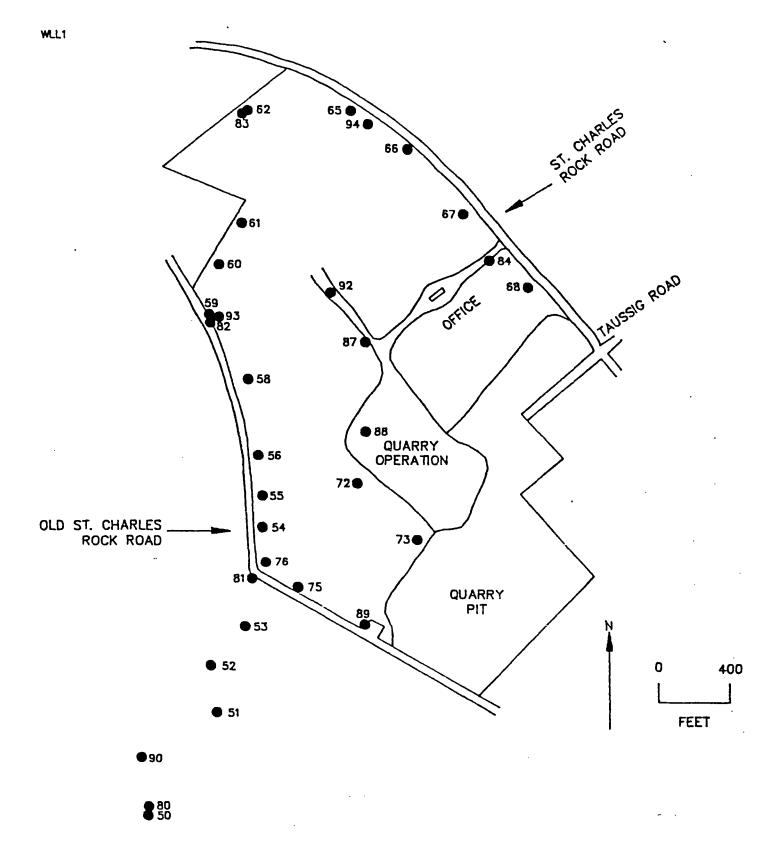
JDB/clt

cc: W. Crow - NMSS

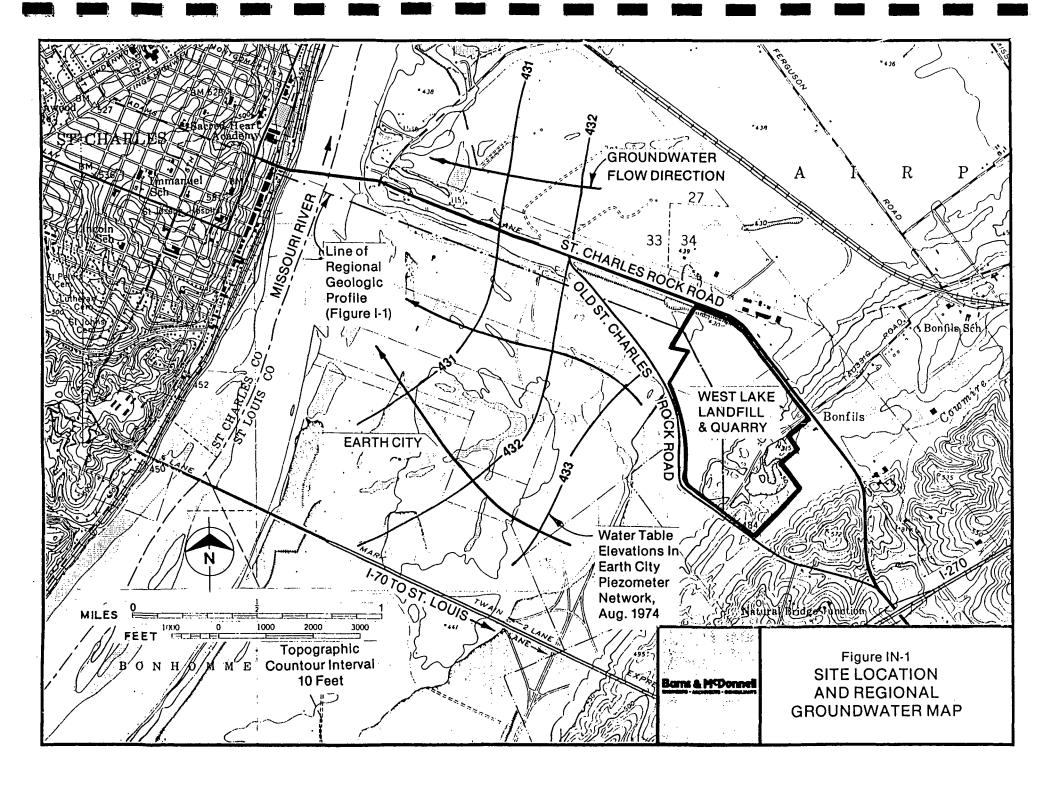
S. Banerji - University of Missouri (Columbia)

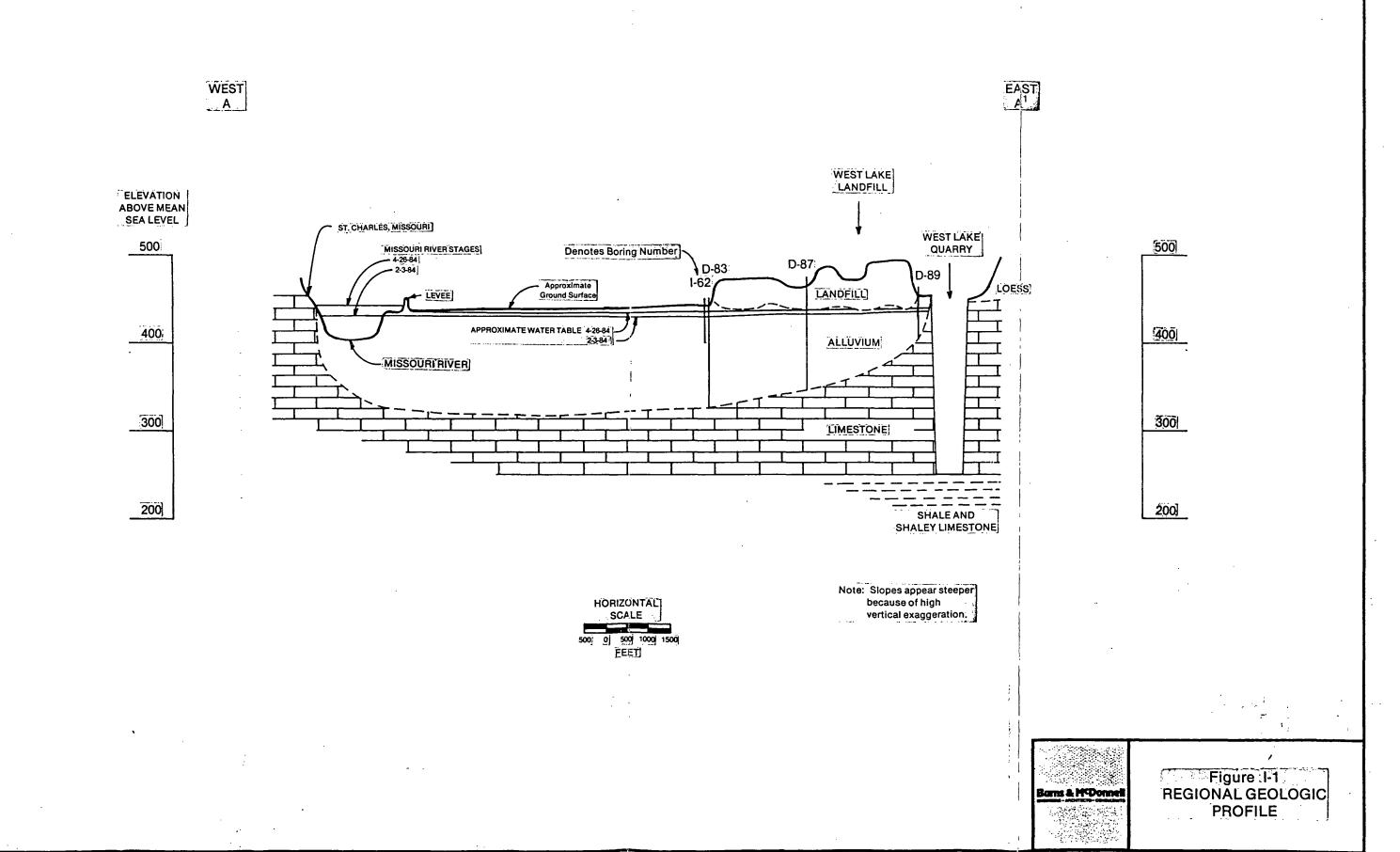
Enclosures

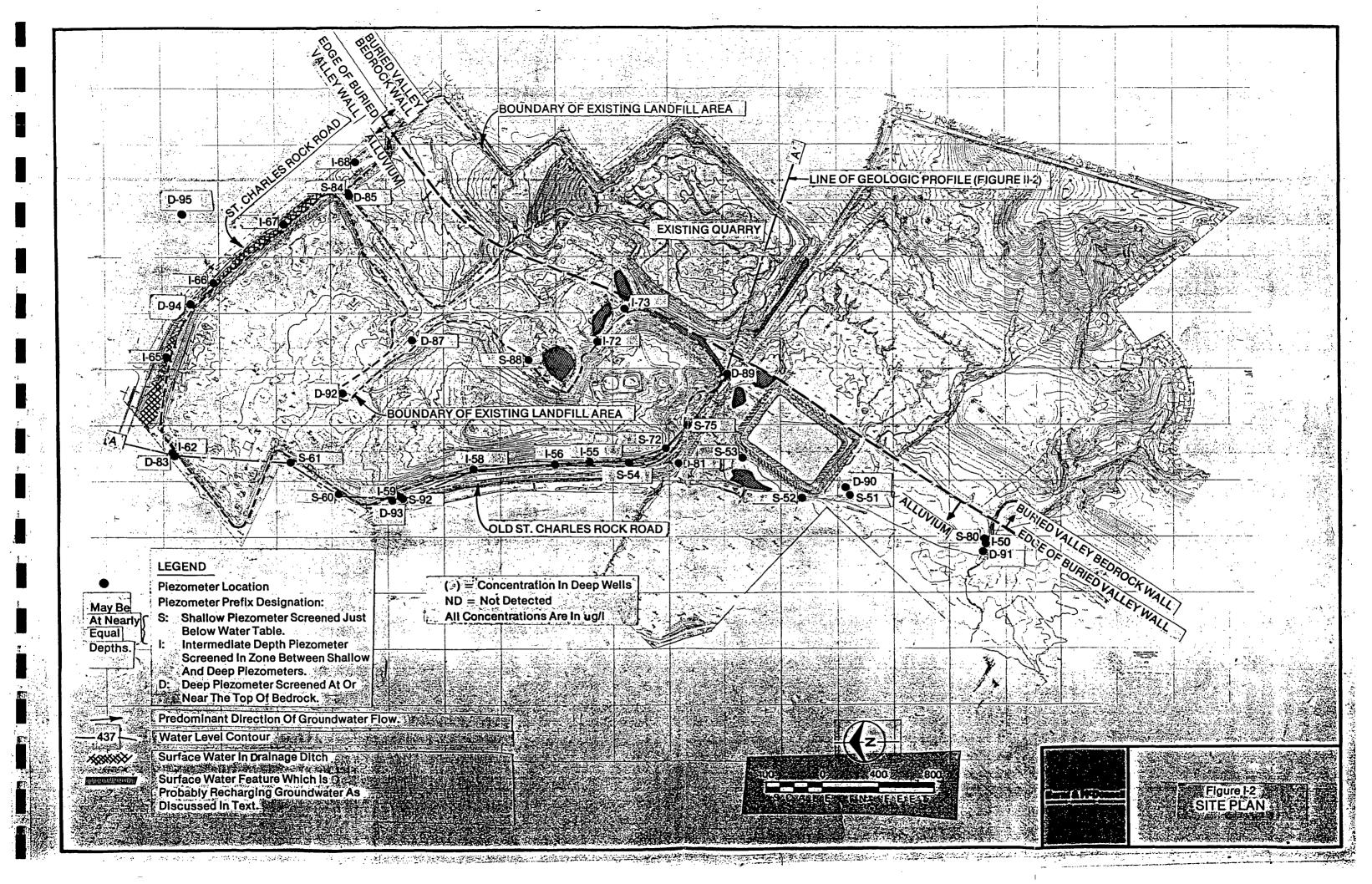
GROSS ALPHA AND GROSS BETA CONCENTRATIONS IN WELL WATER SAMPLES: MAY 7-8, 1986 WEST LAKE LANDFILL ST. LOUIS, MISSOURI

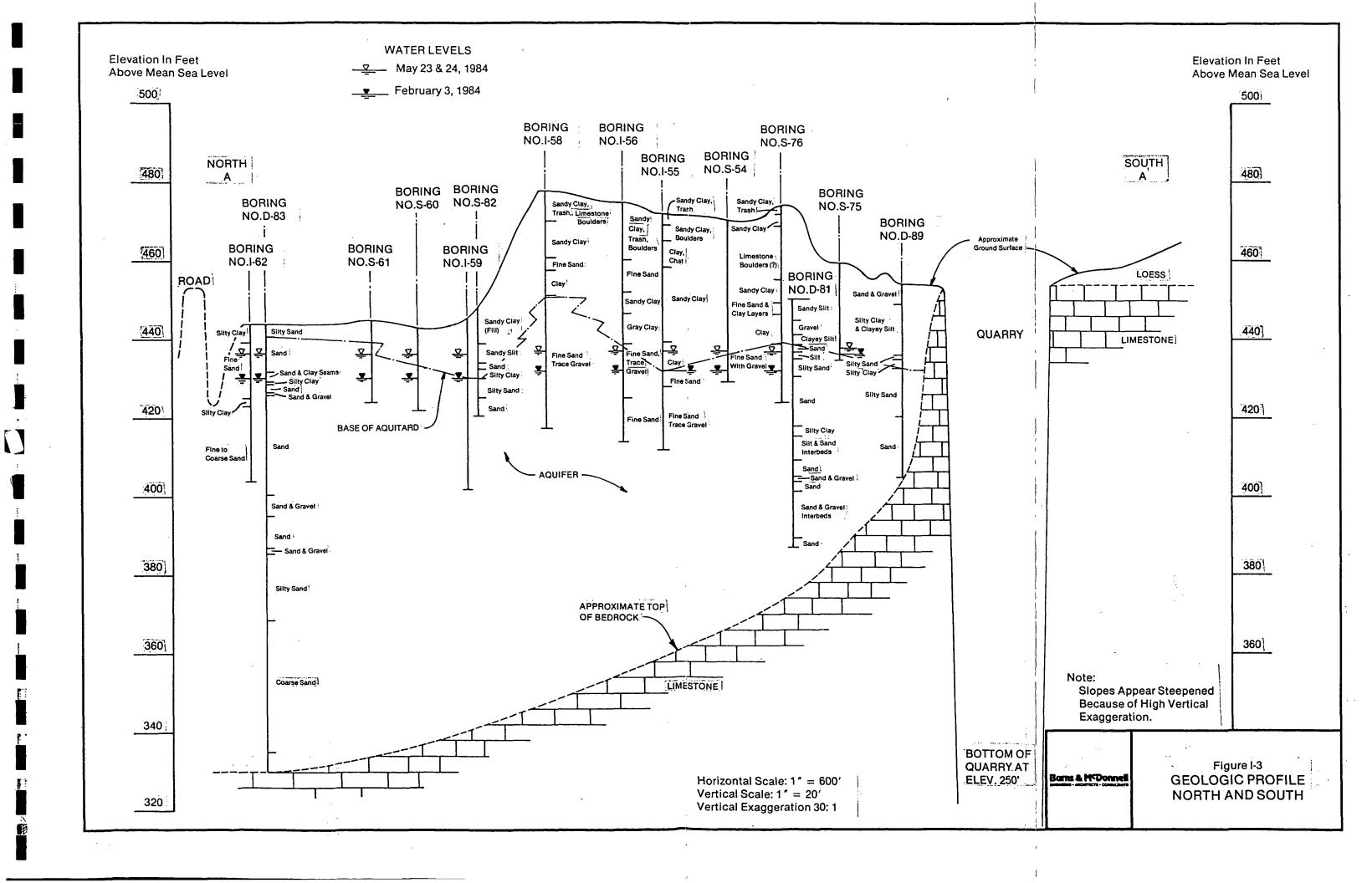

Well ^a Identification	Date Sampled	Depth To Water ^b	Radioactivity Conce Gross Alpha	rtrations (pCi/1) Gross Beta
		(m)		
50	5/8	5.0	2.23 ± 1.07°	7.45 ± 1.36
51	5/7	3.8	2.24 ± 1.12	4.37 ± 1.30
52	5/7	3.2	1.88 ± 0.83	7.51 ± 1.16
53	5/7	3.3	10.6 ± 1.8	15.5 ± 1.7
54	5/7	15.5	4.35 ± 2.08	14.4 ± 3.1
55	5/7	11.5	4.84 ± 1.42	13.9 ± 1.7
56	5/7	12.8	5.69 ± 1.41	11.9 ± 1.6
58	. 5/7	14.0	5.76 ± 1.34	14.6 ± 1.6
59	5/7	ď	11.3 ± 3.3	45.7 ± 4.4
60	5/7	3.5	14.3 ± 1.9	19.0 ± 1.9
61	5/7	4.5	3.33 ± 0.94	14.0 ± 1.4
62	5/7	4.2	5.55 ± 1.26	10.1 ± 1.3
65	5/7	1.9	3.53 ± 1.17	7.39 ± 1.40
66	5/7	1.9	1.75 ± 0.96	9.94 ± 1.38
67	5/7	1.5	8.42 ± 1.69	7.10 ± 1.55
68	5/7	4.4	0.90 ± 1.65	1.91 ± 2.83
72	5/8	10.0	1.39 ± 1.23	4.60 ± 1.65
73	5/8	8.4	6.50 ± 1.53	7.72 ± 1.57
75	5/-7	7.6	10.5 ± 2.9	22.3 ± 3.5
76	5/8	13.8	3.60 ± 1.28	6.89 ± 1.77
80	5/8	5.3	8.28 ± 2.19	13.3 ± 2.5
81	5/7	4.8	7.91 ± 1.77	15.6 ± 1.9
82	5/7	5.1	17.0 ± 5.5	46.8 ± 6.6
83	5/7	3.9	8.99 ± 1.77	17.8 ± 2.1
84	5/8	7.0	13.1 ± 4.2	27.3 ± 4.7
87	5/8	9.4	1.47 ± 1.44	7.22 ± 2.36
88	5/8	8.6	10.7 ± 2.5	17.7 ± 2.7
89	5/8	7.5	3.73 ± 1.27	9.10 ± 1.55
90	5/7	4.1	2.23 ± 0.92	6.81 ± 1.52
92	5/8	13.1	7.25 ± 1.88	11.3 ± 2.5
93	5/7	4.7	7.42 ± 1.99	21.7 ± 2.9
94	5/7	2.1	1.62 ± 0.89	

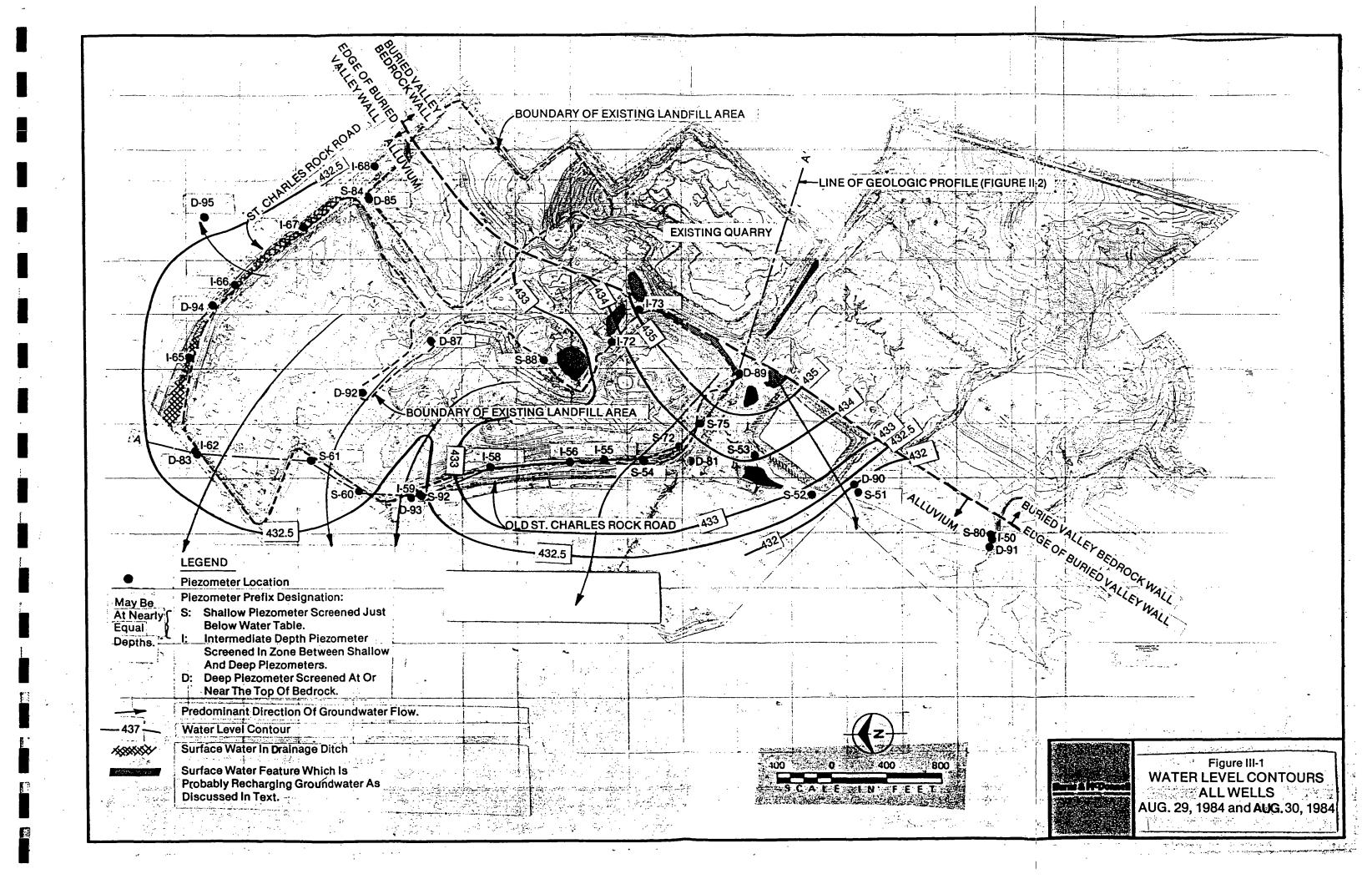
aRefer to attached Figure.

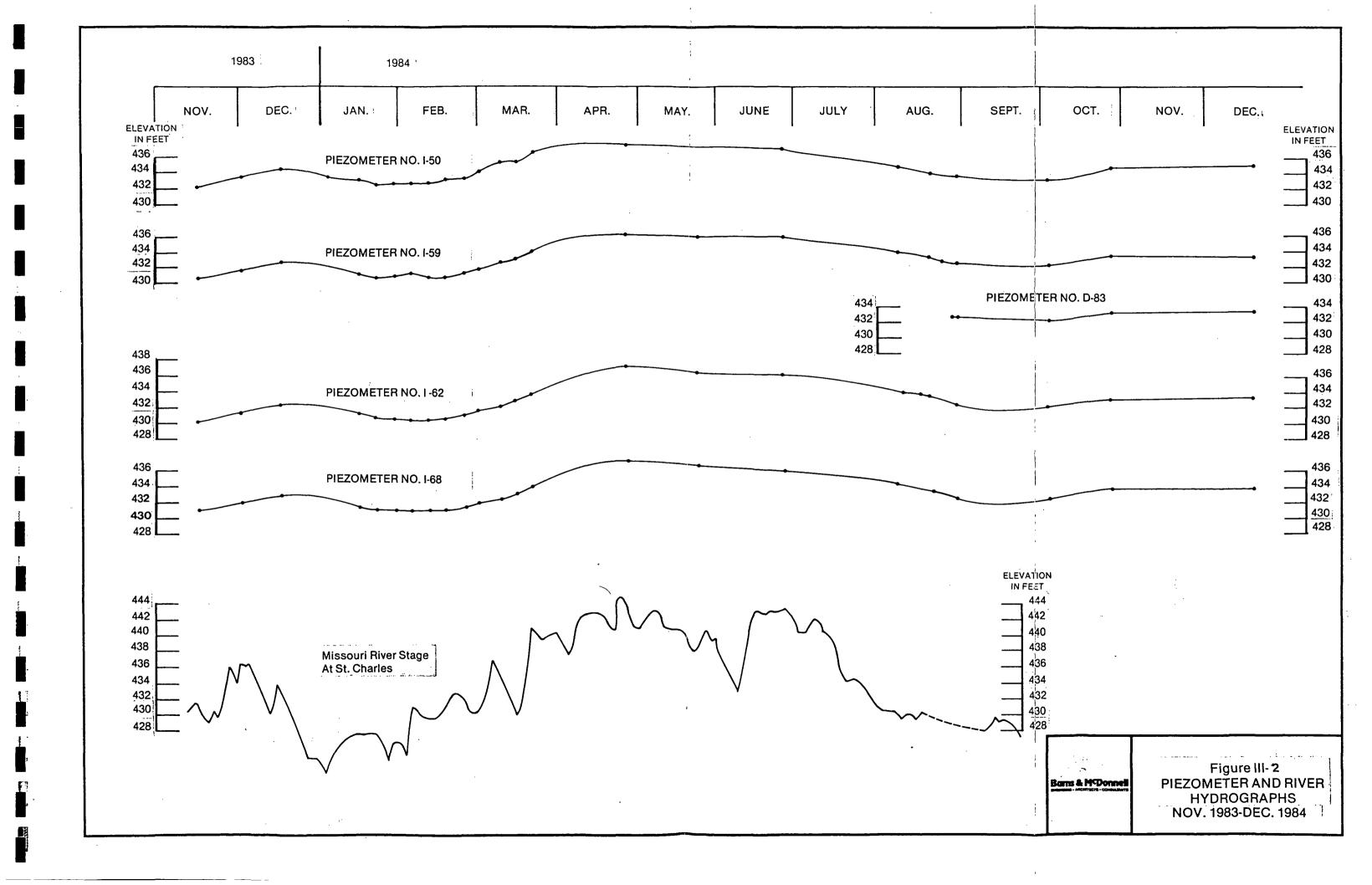

bAs measured below ground surface.

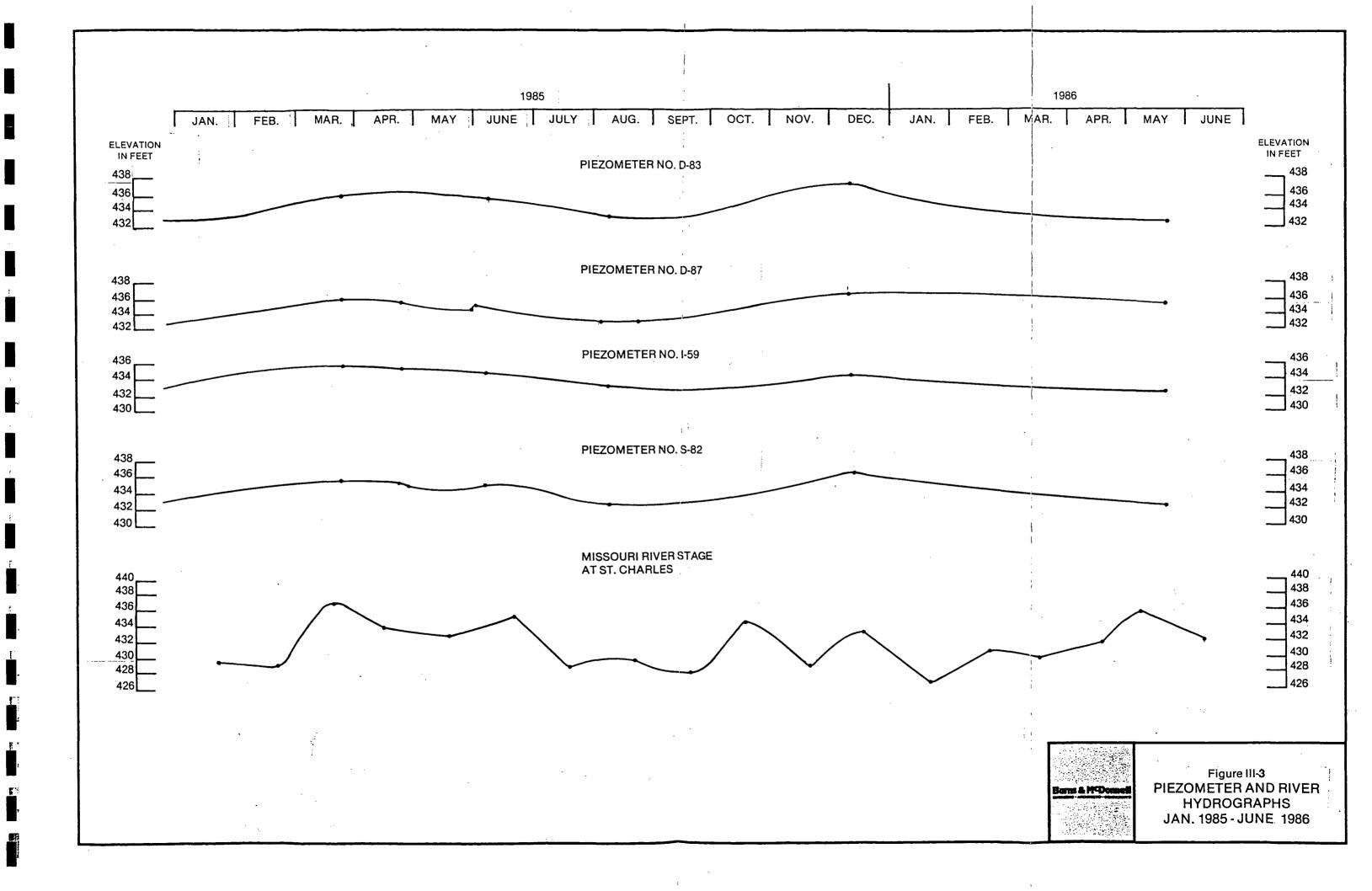

CErrors are 20 based only on counting statistics.

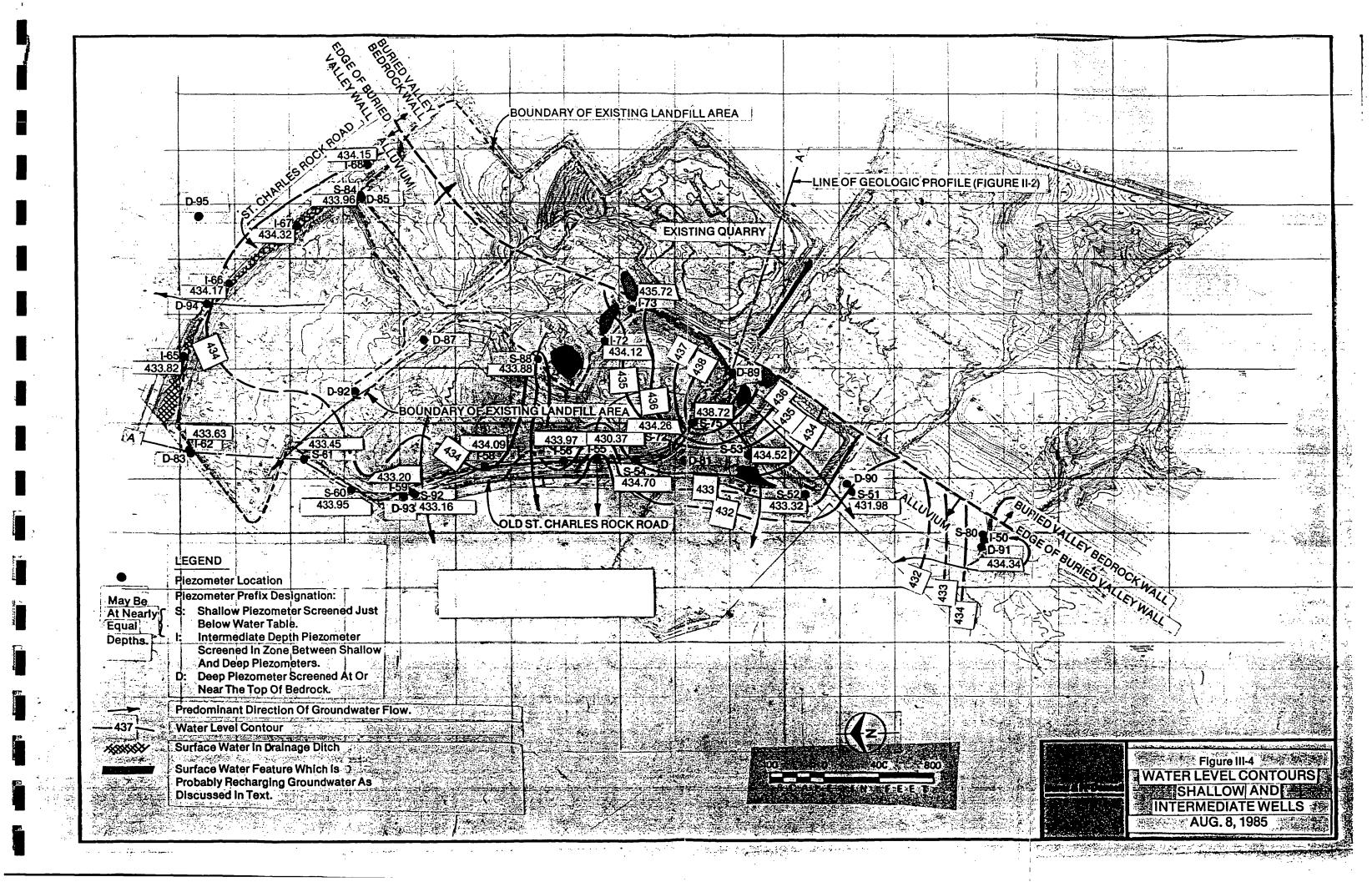

dDepth not determined.

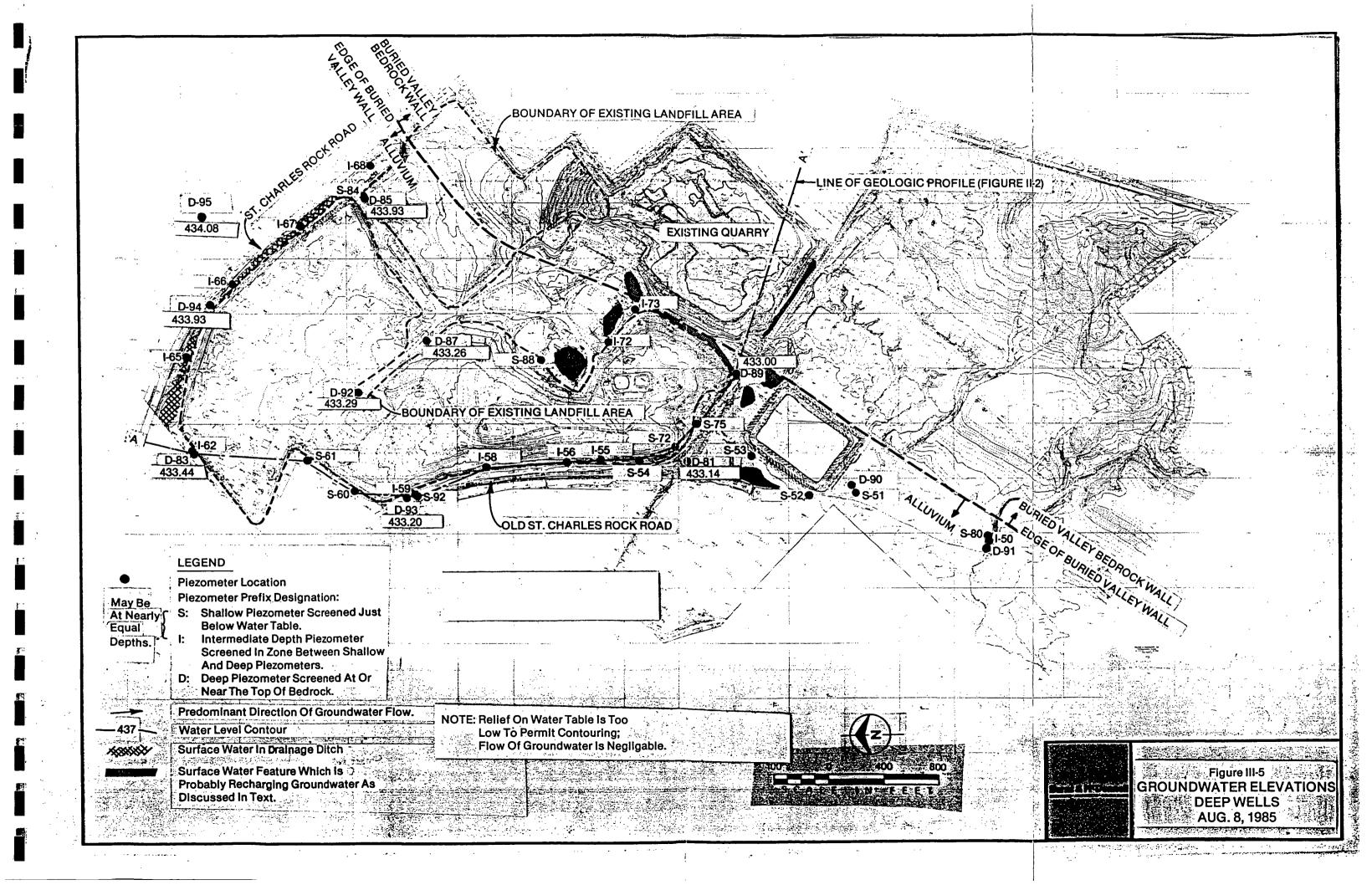


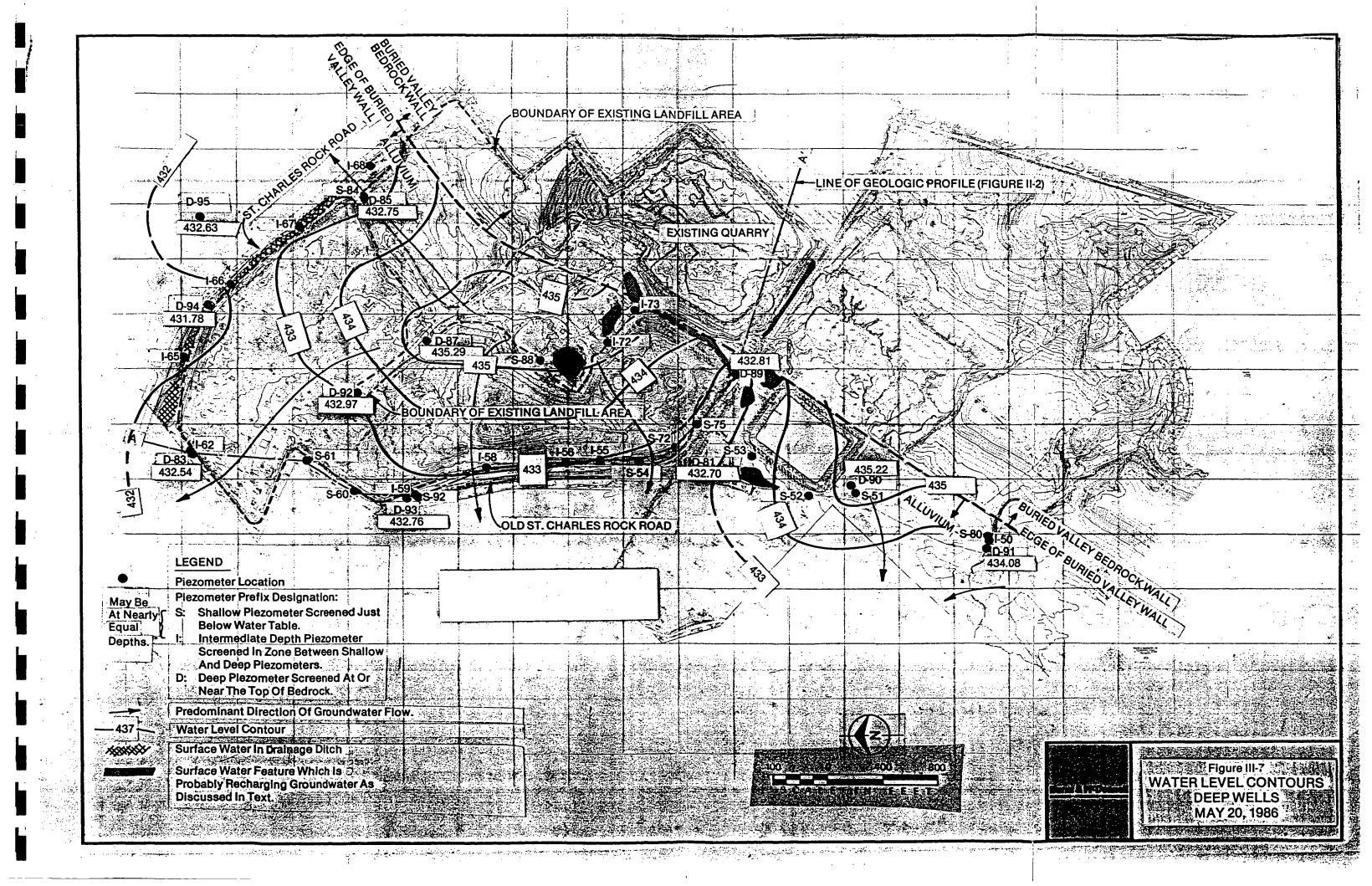

Well Sampling Locations at West Lake Landfill May 7 and 8, 1986

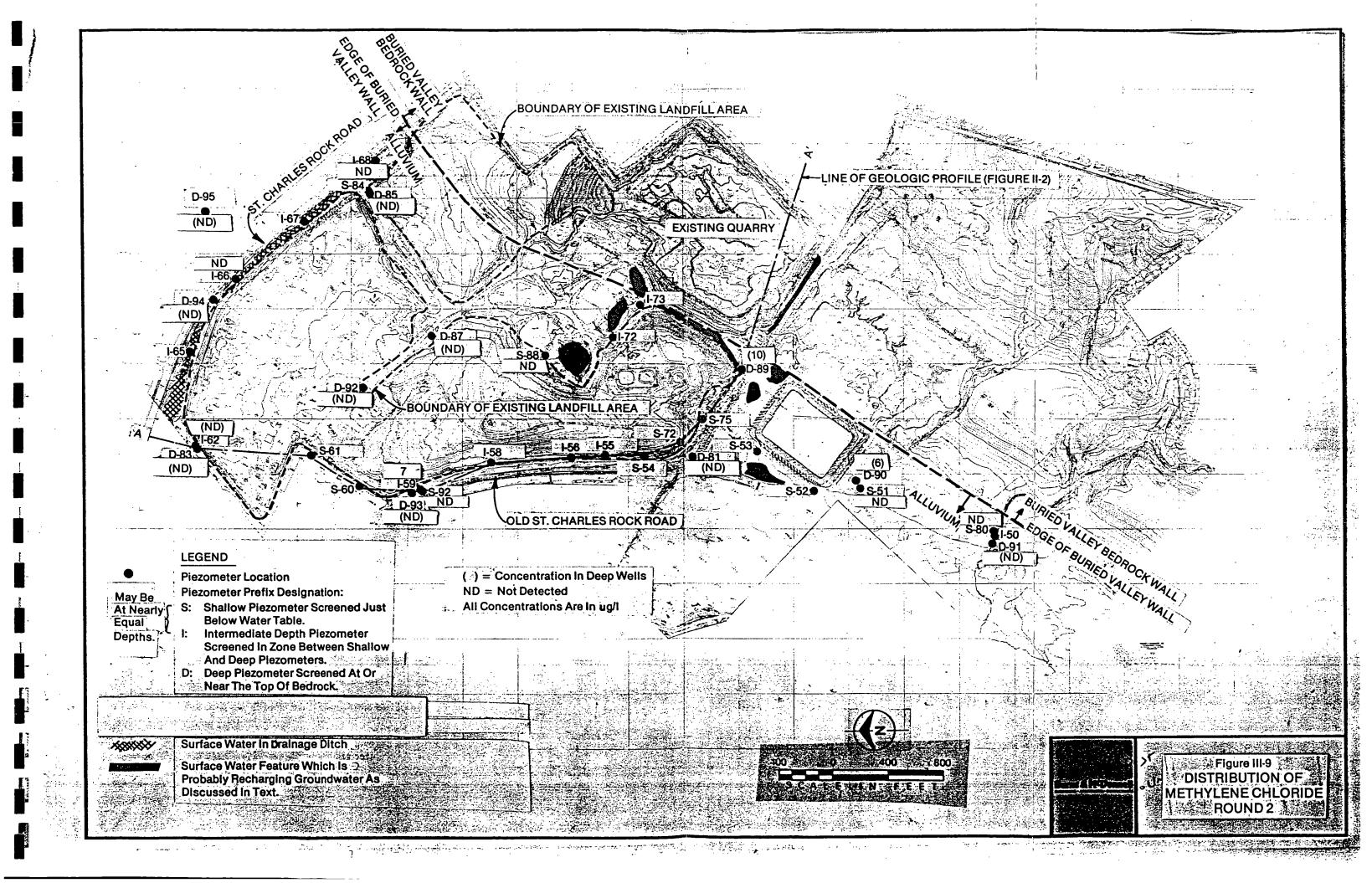


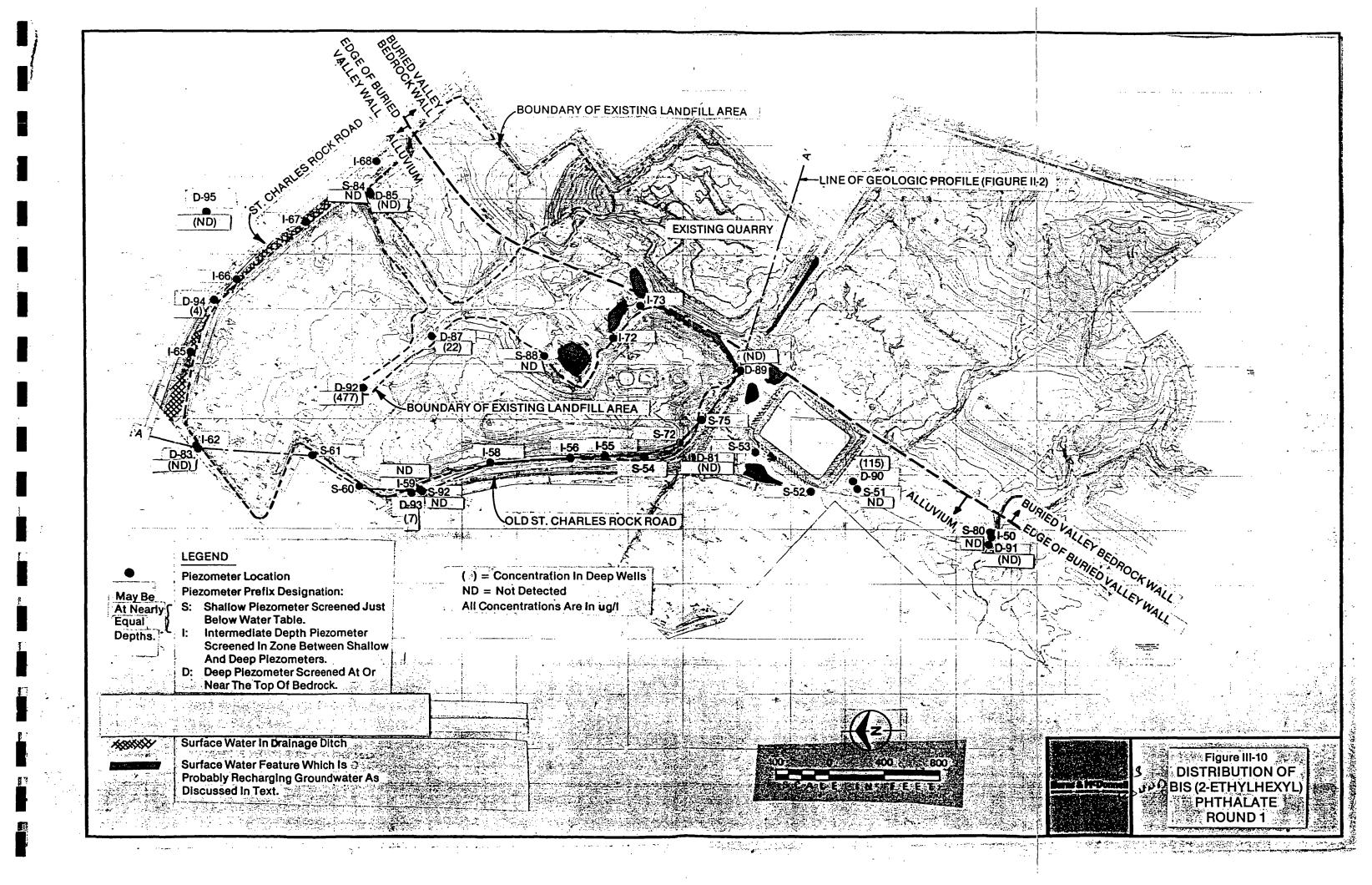


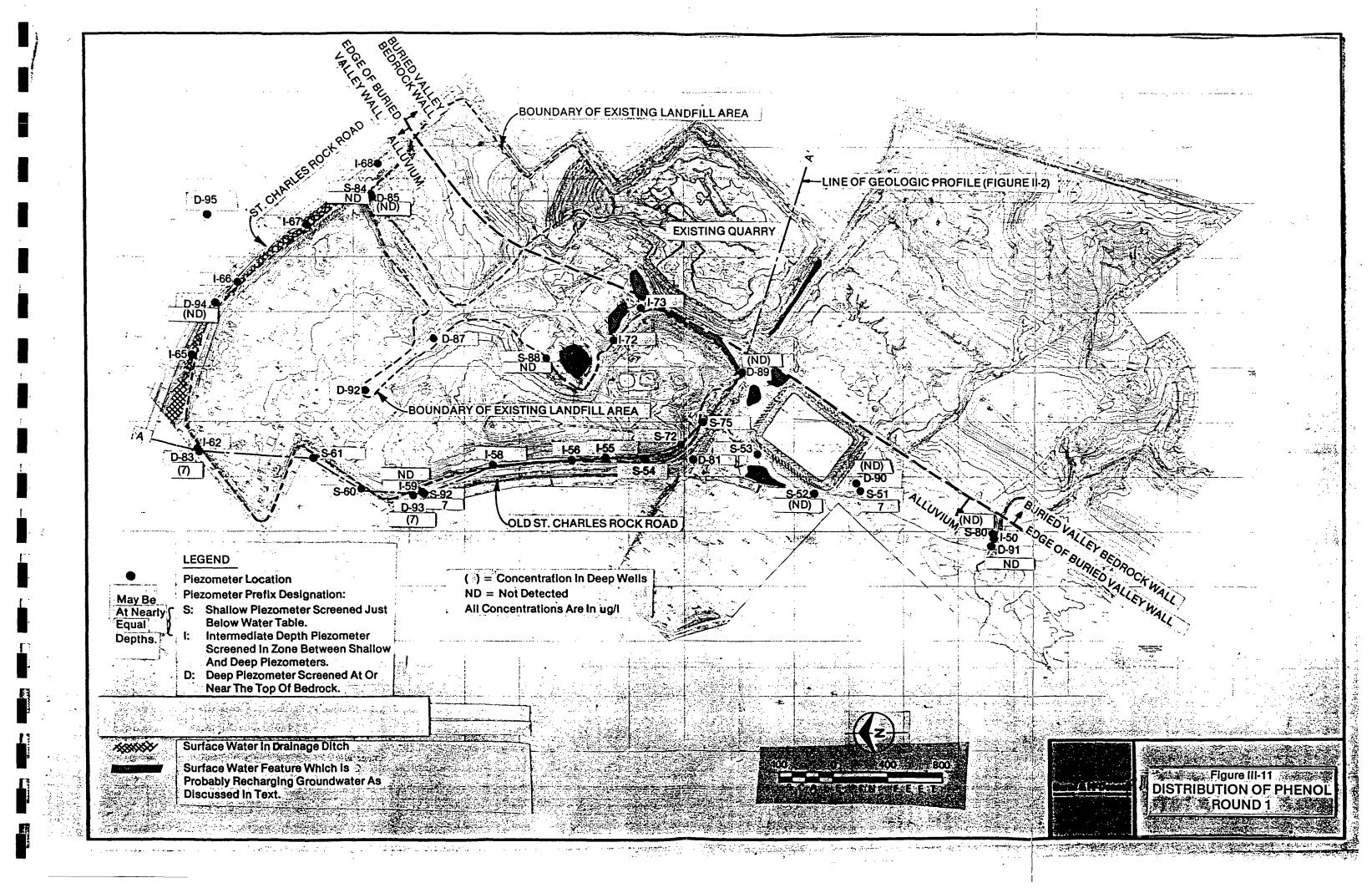


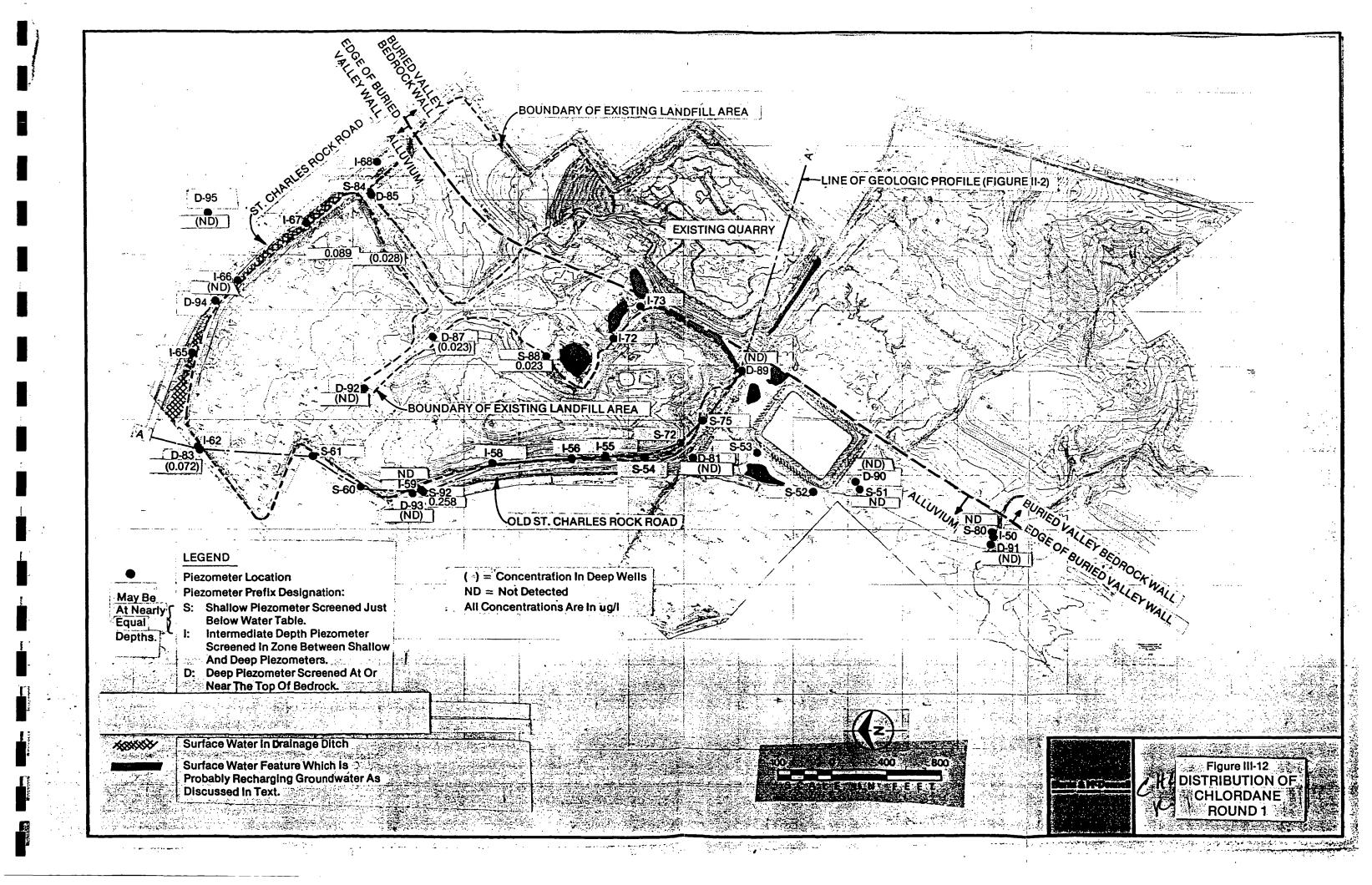


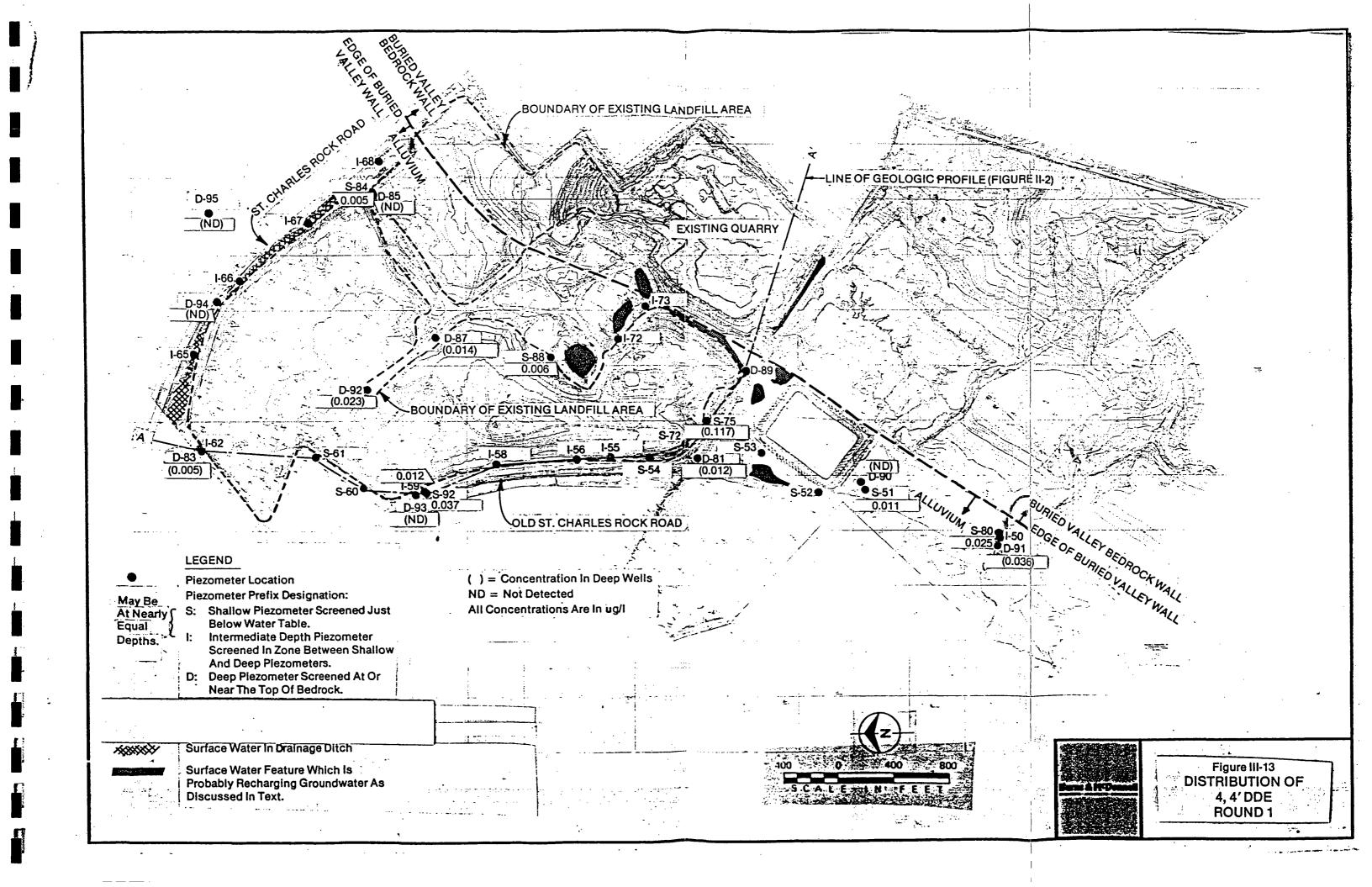


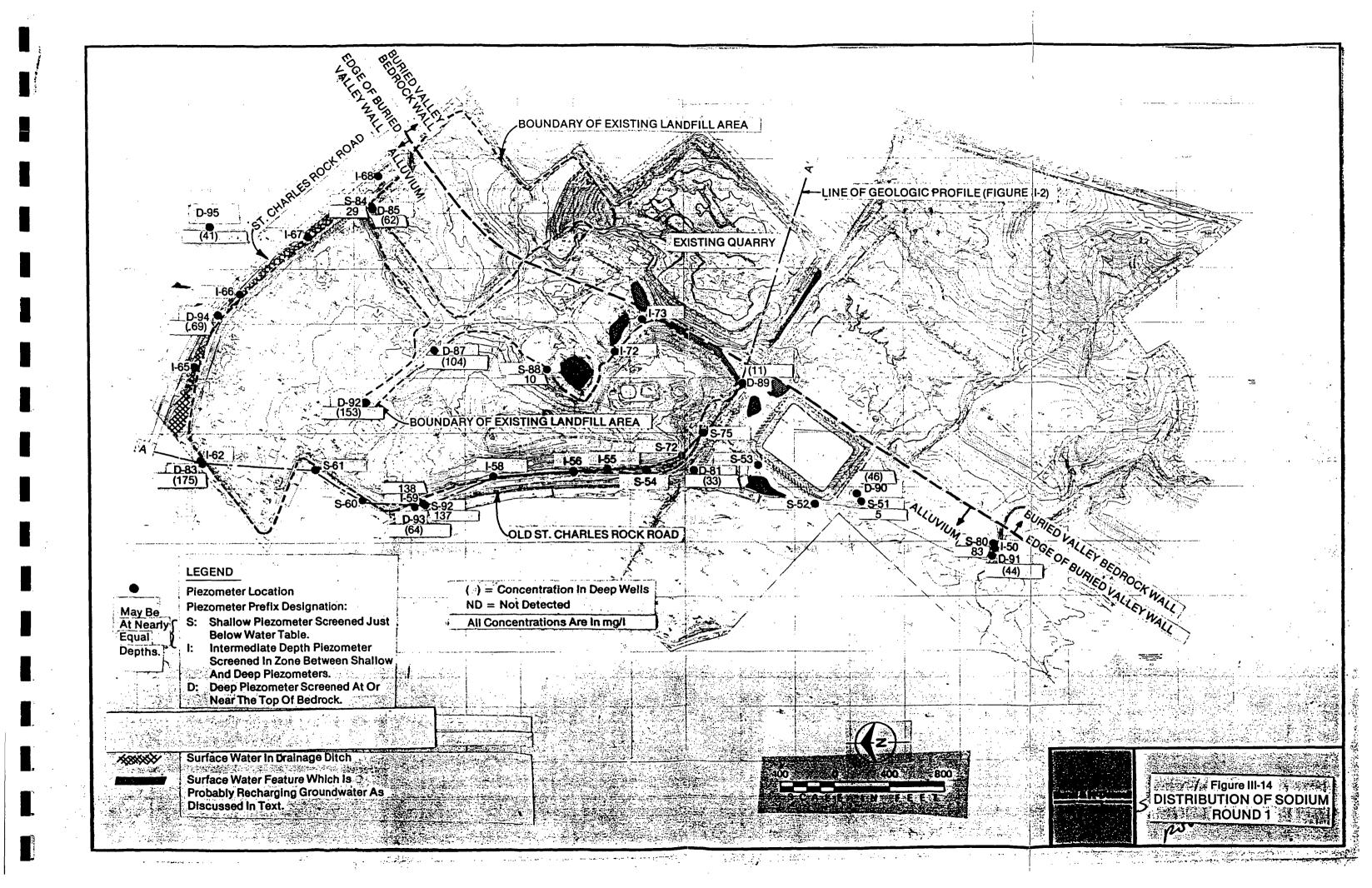


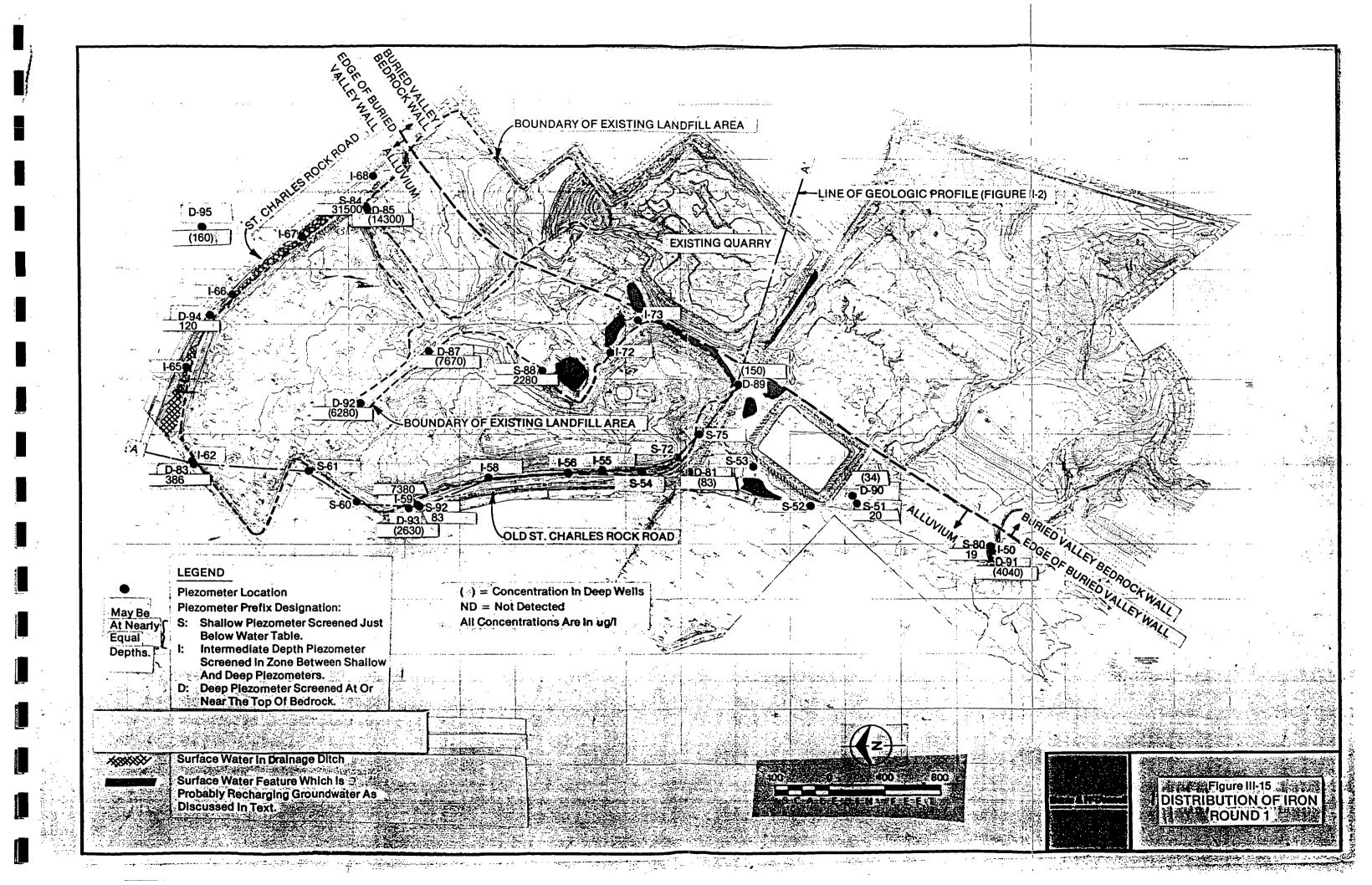


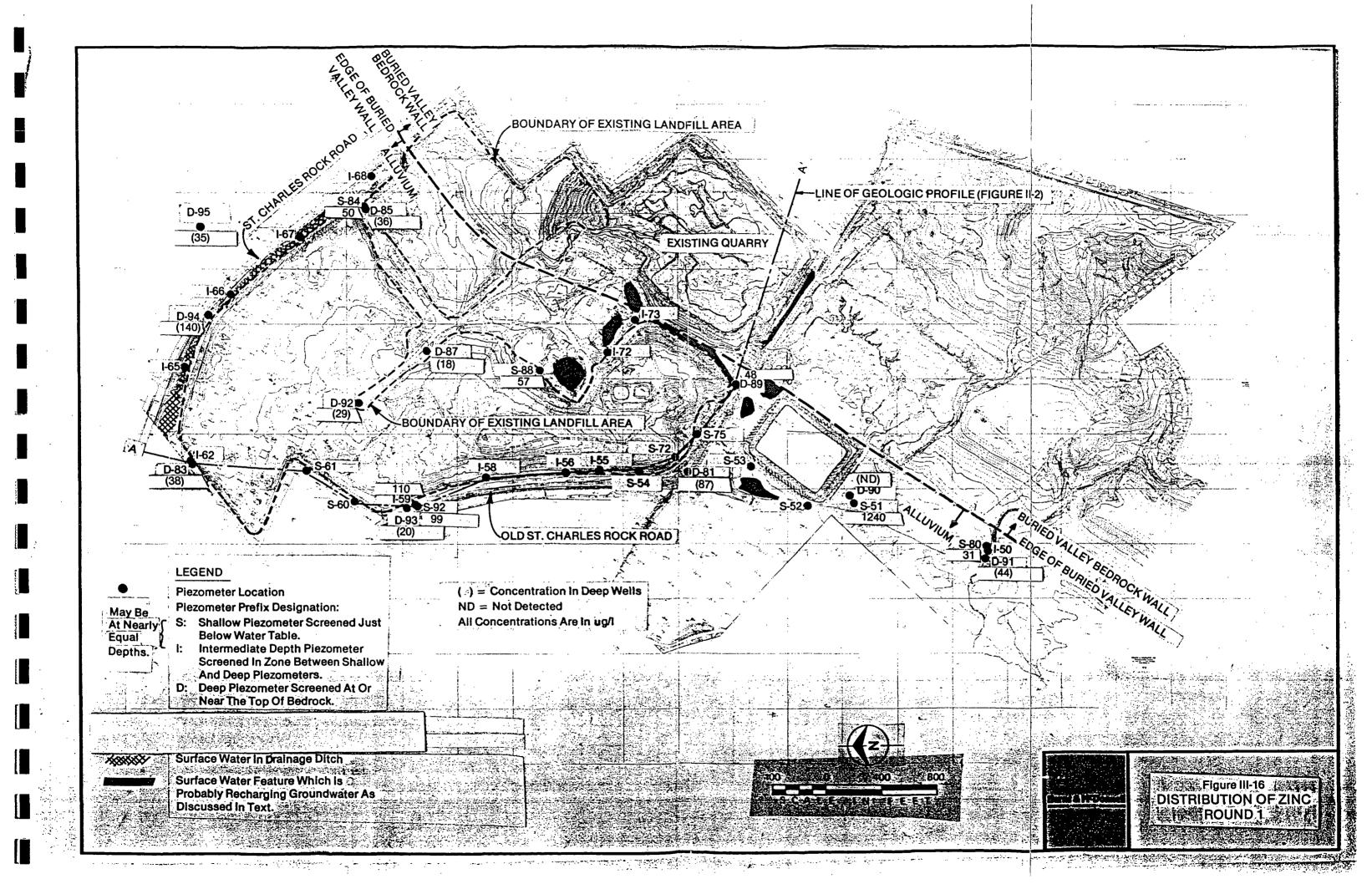


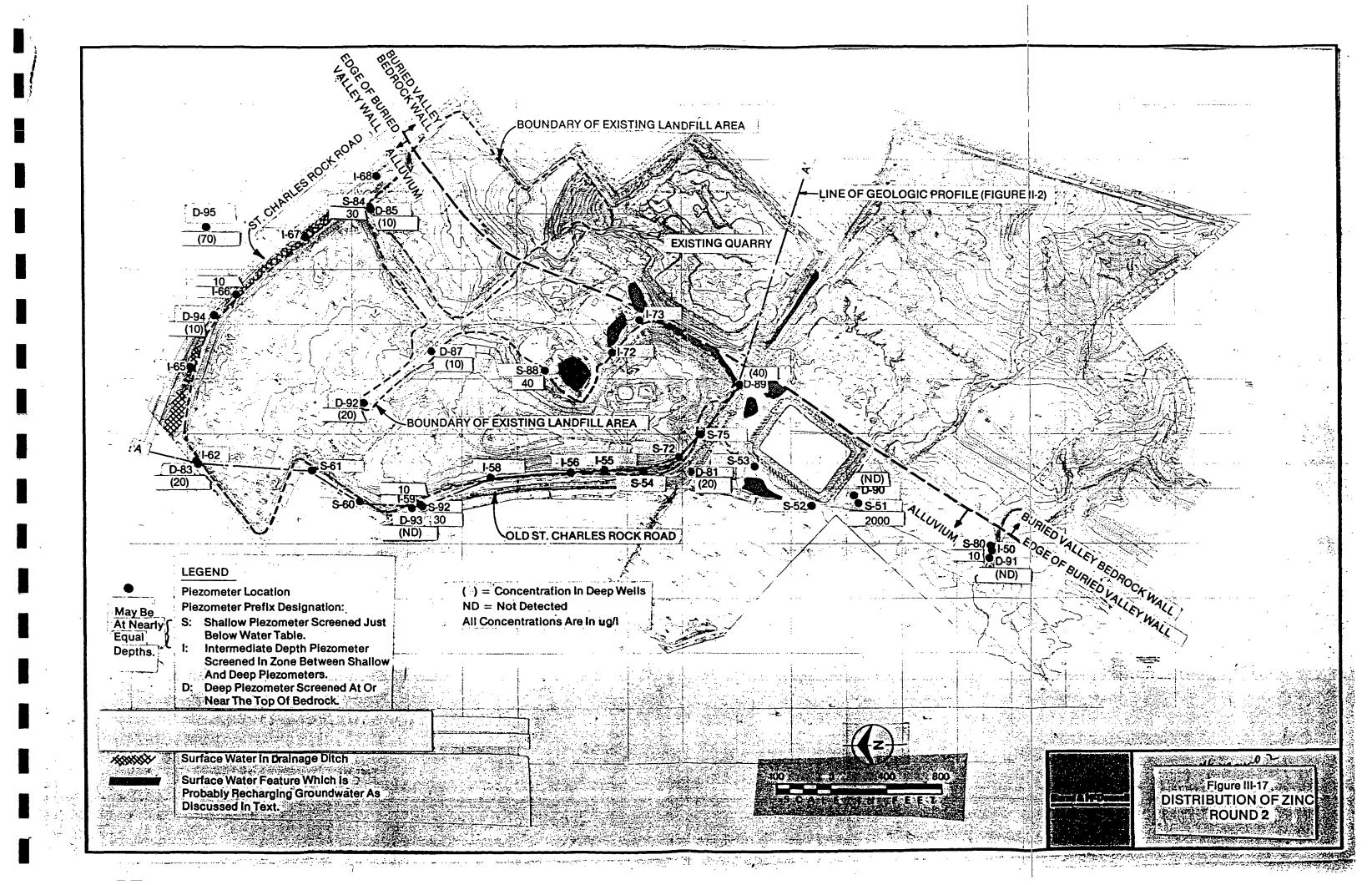


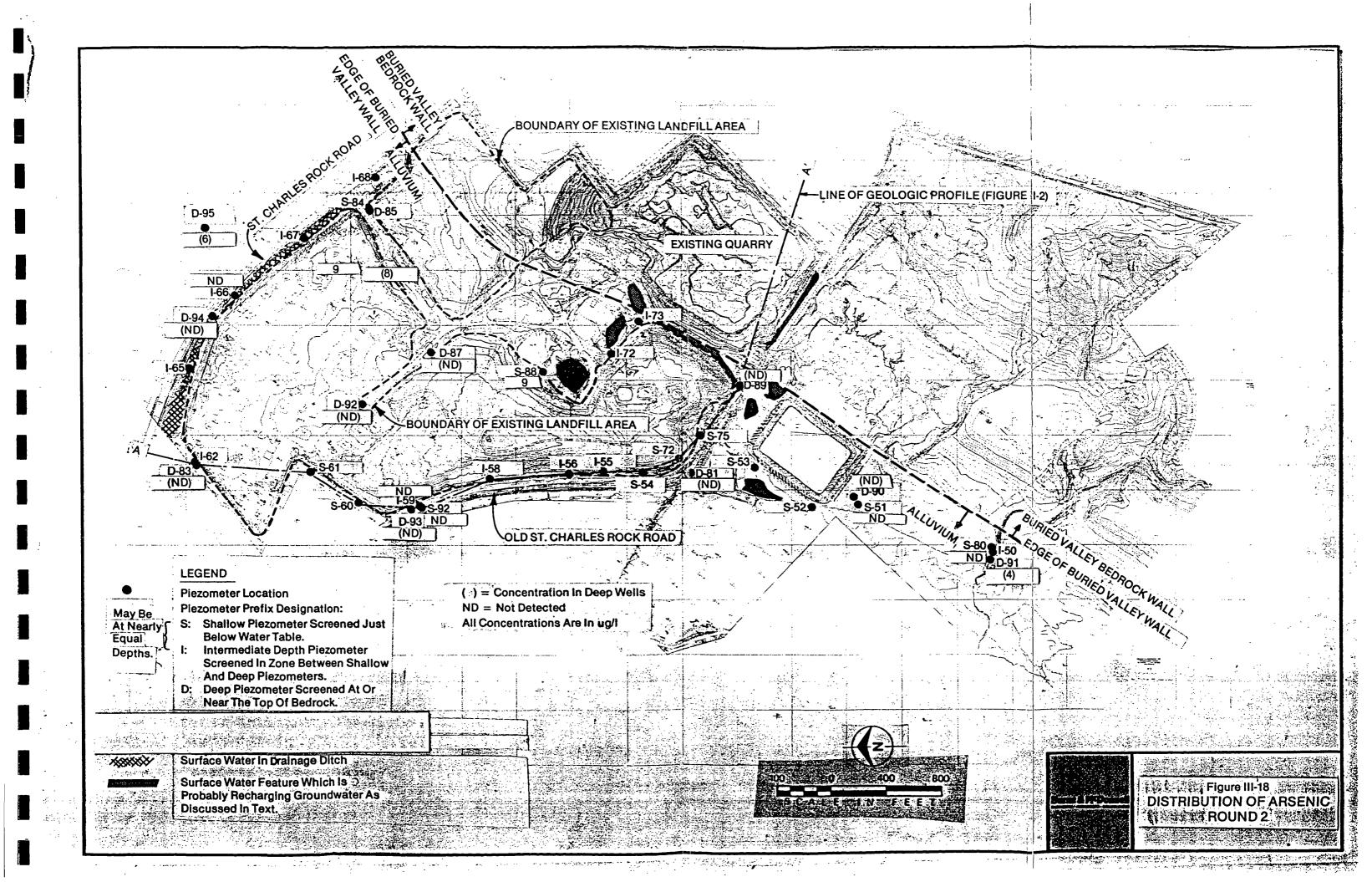












Radiological Survey of the West Lake Landfill St. Louis County, Missouri

Manuscript Completed: April 1982 Date Published: May 1982

Prepared by L. F. Booth, D. W. Groff, G. S. McDowell, J. J. Adler, S. I. Peck, P. L. Nyerges, F. L. Bronson

Radiation Management Corporation 3356 Commercial Avenue Northbrook, IL 60062

Prepared for Division of Fuel Cycle and Material Safety Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, D.C. 20555 NRC FIN B6901

> WOM 0010 Exhibit 14-C

ABSTRACT

This report presents the results of a radiological survey of the West Lake Landfill, St. Louis County, Missouri, performed by Radiation Management Corporation during the spring and summer of 1981. Measurements were made to determine external radiation levels, concentrations of airborne contaminants and the identity and concentrations of subsurface deposits. Results indicate that large volumes of uranium ore residues, probably originating from the Hazelwood, Missouri, Latty Avenue site, have been buried at West Lake Landfill. Two areas of contamination, the covering more than 15 acres and located at depths of up to feet below the present surface, have been identified. There is no indication that significant quantities of contaminants are moving off-site at this time.

LIST OF FIGURES

1.	Aerial view of West Lake Landfill, St. Louis County Missouri.	25
2.	West Lake Landfill aerial survey isopleths.	26
3.	External gamma radiation levels, November, 1980.	27
4.	External gamma radiation levels, May, 1981.	28
5.	Grid locations for radiological survey, Area 1.	29
6.	Grid locations for radiological survey, Area 2.	30
7.	Location of surface soil samples, Area 1.	31
8.	Location of surface soil samples, Area 2.	32
9.	Location of auger holes Area 1.	33
10.	Location of auger holes Area 2.	34
11.	Auger hole NaI(Tl) count rate vs IG in situ measurements.	35
12.	Location of subsurface contamination and surface radiation levels, Area 1.	36
13.	Location of subsurface contamination and surface radiation levels, Area 2.	37
14.	Auger hole elevations and locations of contamination.	38
15.	Cross section A-A of subsurface deposits in Area 1.	39
16.	Cross section B-B of subsurface deposits in Area 1.	39
17.	Cross section C-C of subsurface deposits in Area 2.	40
18.	Cross section D-D of subsurface deposits in Area 2.	41
19.	Cross section E-E of subsurface deposits in Area 2.	42
20.	Radon-222 flux measurements, at 3 locations in Area 2,	43

List of Figures, cont.	
I-l Portable survey instrument kit.	119
I-2 High sensitivity tissue equivalent ionization chamber system	. 120
<pre>I-3 Plot of ionization chamber exposure rates versus NaI(T1) count rate.</pre>	121
I-4 Interior of mobile laboratory.	122
I-5 <u>In situ</u> auger hole system with intrinsic germanium detector.	123
I-6 Radon sampling cells, pump and gas analyzer.	124
T-7 Automatic gas flow beta-gamma counter.	125

LIST OF TABLES

1.	Gamma radiation levels and beta-gamma count rates at grid locations in Area 1.	44
2.	Gamma radiation levels and beta-gamma count rates at grid locations in Area 2.	47
3.	Surface soil sample gamma analyses.	56
4.	Uranium and thorium radiochemical soil determinations.	58
5.	Auger hole NaI counts and IG analyses.	59
6.	Water sample analysis results.	73
7.	Radon flux measurements using the accumulator method.	75
8.	Radon flux measurements using the charcoal canister method.	79
9.	Side-by-side radon flux measurements, accumulator method vs charcoal canister method.	80
10.	Working level (WL) and long-lived gross alpha activity on high volume air samples.	81
11.	Gamma analysis of high volume air samples for Rn-219 daughters.	83
12.	Priority pollutant analyses of auger hole and leachate sludge samples.	84
13.	Chemical analysis of radioactive material from Areas 1 and 2.	109
14.	Summary of background measurements, in vicinity of West Lake Landfill.	110
15	Target criteria and measurements LIDs for West Lake Landfill	111

I. INTRODUCTION

In August 1980, Radiation Management Corporation (RMC), under contract to the U.S. Nuclear Regulatory Commission (NRC), performed radiological evaluations of four burial grounds[1]. The first of these sites selected for evaluation was the West Lake Landfill in St. Louis County, Missouri. An initial site visit was completed in August 1980, and a preliminary radiological survey was completed in November 1980. The detailed radiological evaluation was performed in the spring and summer of 1981.

The purpose of this survey was to clearly define the radiological conditions of the West Lake Landfill site. The results of this survey should be sufficient to allow an engineering evaluation to be performed to determine whether remedial actions should and can be taken.

The methods used to evaluate this site include the following:

- 1) measurement of external gamma exposure
 rates 1 meter above the surfaces and
 beta-gamma count rates 1 cm above
 surfaces;
- 2) measurement of radionuclide concentrations in surface soils;
- 3) measurement of radionuclide concentrations in subsurface deposits;
- 4) measurement of gross activity and

radionuclide concentrations in surface and subsurface water samples;

- 5) measurement of radon flux emanating from surfaces;
- 6) measurement of airborne radioactivity; and
- 7) measurement of gross activity in vegetation.

These measurements were performed on-site using two mobile facilities designed by RMC. A small number of samples were returned to the RMC radiological laboratories in Philadelphia for analysis for nuclides which could not be detected in the field, and for quality assurance checks on the field measurements. A set of reference background measurements were made at three locations in the St. Louis area, near West Lake Landfill. In addition, a series of non-radiological measurements were performed to identify the possible presence of toxic or hazardous agents known or believed to have been buried at this landfill.

II. SITE CHARACTERISTICS

The West Lake Landfill is located on St. Charles Rock west of the Taussig Road intersection in Road The site is about one (1) mile Bridgeton, Missouri. northwest of Route 270 and approximately 1-1/2 miles east of the Missouri River. is located in combined It a rural-industrial area, and is bounded on three sides by farm land and on the fourth by St. Charles Rock Road, beyond which are located several commercial and industrial establishments. The nearest residential area is a trailer park located about 3/4 of a mile southeast of the landfill.

The site is approximately 200 acres and consists of a quarry, stone and limestone processing and storage areas, and several active and inactive landfills (Figure 1), which are open to the public during normal working hours. West Lake Landfill keeps track of entries for the purpose of assessing fees for disposal; however, access is not controlled for other reasons. Users are prohibited from disposing of hazardous materials at this site by current Missouri state law.

Studies indicate the landfill is on the alluvial floodplain of the Missouri River. This fact prompted the Missouri Geological Survey, in 1973, to propose classification of the site as hazardous under the then existing operating procedures. In addition, samples from perimeter monitoring wells taken in 1977 and 1978

indicated some movement of leachate into monitoring wells, based on chemcial (not radiological) analyses. However, recent studies by the Department of Natural Resources indicate little or no surface or sub-surface movement of materials from the site[2]. Leachate from the active sanitary landfill is collected and treated on-site. At this time there is no evidence of significant ground water contamination; however, geological reports indicate a potential for such problems.

In May 1976, the St. Louis Post-Dispatch[3] printed a story alleging that radioactive material had been erroneously dumped in the West Lake Landfill in 1973. The source of this material was identified as the Cotter Corporation, Hazelwood, Missouri, Latty Avenue Site.

An NRC investigation conducted by Region III in 1976 [4] concluded that about 7 tons of U308, contained in 8700 tons of leached barium sulfate residues, had been mixed with about 39,000 tons of soil at Latty Avenue and the entire volume disposed of at the West Lake Landfill. The earlier study by the Post-Dispatch (1976) claimed only 9000 tons (presumably the leached barium sulfate residues) had been buried, and that the remaining material had not been disposed of at West Lake. The Post-Dispatch alleged that the contractor hauling the dirt had admitted falsifying invoices for about 40,000 tons of soil. Discussions with site personnel indicated that a large quantity of soil from Latty Avenue had indeed been dumped at West Lake, although

the exact amount was unknown.

A fly-over radiological survey (ARMS flight), performed for the NRC in 1978, showed external radiation levels as high as 100 uR/hr in the area indicated by West Lake personnel as containing the Latty Avenue material. In addition, this survey revealed another possibly contaminated zone in a fill area previously believed to be "clean".

Figure 2 shows the results of the 1978 aerial survey. The area in the southeast fill was believed to contain Latty Avenue material, while that on the northeast boundary was previously unidentified.

In addition to radioactive material, it is known that hazardous chemical wastes have been disposed of at this landfill. Since disposal was unregulated prior to 1973, little is known about the actual materials present. However, it is believed that aside from normal landfill materials, there are chemical industrial wastes in the landfill.

Among the chemical wastes believed to be present are:

waste ink halogenated intermediates

pigments aromatics

oily sludges oils

esters wastewater sludges

alcohols heavy metals

insecticides herbicides

III. RADIOLOGICAL SURVEY METHODS

(A) Measurement of External Radiation Levels

The two areas of contamination were gridded and surveyed for both gamma radiation levels at one meter above the surface, and beta-gamma levels at the ground surface.

The basic pattern at each contaminated area was survey blocks defined by a 10 meter grid system. External gamma levels at one meter were recorded at each grid point at each intersection of two grid lines). Initially, precise exposure rate measurements at a few specially selected grid made with a sensitive Tissue Equivalent points were Ionization Chamber System (described in Appendix I). At the same time, NaI scintillation detector (described in Appendix I) measurements were made and a conversion factor for the NaI count rate versus uR/hr established (See Figure I-3). Once this factor was confirmed, the scintillation detector was used for all grid measurements at relatively low exposure rates. For the few higher rates encountered, a Geiger-Mueller portable survey instrument was used.

At each grid point, an end window G-M tube (described in Appendix I) was used for surface measurements. An open and closed window reading was made at 1 cm, and the ratio of the two used to indicate the presence or absence of surface contamination.

(B) Measurement of Surface Radioactivity

Based on the external surface measurements, surface soil samples were collected for analysis from both contaminated areas. These samples were collected from locations on-site where surface deposits were indicated, as well as locations where the drainage characteristics indicated the possibility that radioactive materials may have been carried or washed away from original burial locations. The soils were dried, ground and sealed in 500 ml aluminum cans for counting on the intrinsic germanium (IG) gamma ray spectroscopy system (described in Appendix I).

Vegetation on-site consisted only of grass and common weeds. Off-site, crops are grown on farm land immediately north and west of the site. Since the possibility of contamination exists here, crop samples were collected where indicated by surface measurements. These samples were dried, crushed and counted as described above.

(C) Measurements of Subsurface Radioactivity

Since it was known that most, or all, of the radioactive materials at the West Lake Landfill have been buried, extensive subsurface monitoring and sampling was required. The purpose of this activity was to determine the depth and lateral extent of subsurface contamination.

A series of holes through and bordering the contaminated deposits were drilled and lined with 4-inch PVC

casing. Each hole was then scanned with a 2" by 2" NaI(Tl) scintillation detector and rate meter system.

Representative holes were then logged using an in <u>situ</u> gamma measurement system consisting of an intrinsic germanium (IG) detector coupled to a multichannel analyzer (described in Appendix I). Field analyses were then made, both qualitatively and quantitatively, thereby eliminating time consuming laboratory analyses and expensive core sampling of each hole. Measurement intervals ranged from 6" to 24", depending upon factors such as hole depth and activity. An occasional core sample was taken to verify the in <u>situ</u> measurements and to confirm the presence or absence of non-gamma emitting nuclides such as Th-230.

(D) Measurement of Radioactivity in Water

Whenever possible, water samples were taken from the bore holes and two off-site monitoring wells. Samples were also taken from standing water, run off water, and leachate liquids. Samples were filtered, evaporated and counted for gross activity, or were filtered and sealed in Marinelli beakers for gamma spectroscopic analysis.

(E) Measurement of Airborne Radioactivity

Measurements were made to determine if the material buried on-site is a source of airborne radioactivity. The isotopes of concern are Ra-226, Ra-224 and/or Ra-223, which decay to Rn-222 Pn-2220 -- 3 Dn 2220 -- 3 D

emanation of radon from the soil, and movement of radon and daughters off-site.

These measurements may be used to determine Rn flux emanation as a source term for off-site dose calculations, or as an indication of the presence of radium at or below the surface. Additional on-site Rn daughter measurements were made to perform working level (WL) determinations.

Radon flux measurements which are to be related to off-site dose calculations were of no value for Rn-219, due to its very short (4 sec) half-life. Therefore, only its long-lived daughters are of concern for off-site exposures. In addition, if the parent (Ra-223) is not within a few millimeters of the surface, Rn-219 is not likely to emanate into the atmosphere [5].

Due to these considerations, only Rn-222 and Rn-220 fluxes were measured. The principal measurement technique was collection of a filtered gas sample from an accumulator and subsequent counting in a radon gas analyzer (described in Appendix 1). Sequential alpha counting, starting immediately after sampling, allowed separation of Rn-222 from Rn-220 (if present). Repetitive samples were taken from several locations during the survey period in an effort to evaluate the effect of fluctuations between individual measurements, due to varying meteorological and soil conditions. A second method using charcoal canisters was also employed as a check on the accumulator technique.

The presence of Rn-219 was determined by detection of its daughters deposited on high volume particulate sample filters, using gamma spectroscopy. Total Rn daughter levels were also estimated by gross alpha activity on particulate filters. From this, a total working level (WL) determination was made.

IV. SURVEY RESULTS

(A) External Radiation Levels

Two areas of elevated external radiation levels have been identified by this survey. Figure 3 shows the two areas as they existed in November, 1980, at the time of the preliminary RMC site survey. As can be seen, both areas contained locations where levels exceeded 100 uR/hr at 1 meter, and in Area 2, gamma levels as high as 3-4 mR/hr were detected. The total areas exceeding 20 uR/hr were about 3 acres in Area 1 and 9 acres in Area 2.

External gamma levels measured in May and July of 1981 shown in Figure 4. These levels had decreased significantly, especially in Area 1, due to continuing activities at the landfill. In both cases, contaminated areas were covered with additional fill material. RMC estimates that about 4 feet of sanitary fill was added to the entire area denoted as Area 1, and that an equal amount of construction fill was added to most of Area 2. As a result, only a small region of a few hundred square meters in Area 1 exceeds 20 uR/hr. In Area 2, the total area exceeding 20 uR/hr decreased by about 10%, and the highest levels are now about 1600 uR/hr, near the Shuman building.

Both areas were marked off in a 10 m by 10 m grid, based on a north-south line erected from a boundary marker, as laid out by a surveying team, as a reference line. Grid

designations are shown in Figures 5 and 6. At each grid point, external gamma levels at 1 m, and beta-gamma count rates at 1 cm, were measured. Results of these measurements are given in Tables 1 and 2.

Beta-gamma measurements at 1 cm from the surface are given in count rates, rather than dose rates, due to the difficulty in measuring beta dose rates accurately with end window G-M tubes. Large differences between open- and closed-window readings indicate the possibility of surface contamination. Little surface contamination was found in Area 1, as would be expected due to fresh land fill cover over nearly the entire area.

Several isolated spots of surface contamination in Area 2 were indicated by beta-gamma measurements, and later confirmed by surface soil sampling. These spots are generally located near the northwest edge of Area 2, which includes the berm that bounds the landfill at that point. Some erosion and run-off is evident along the top of the fill, apparently uncovering deposits of radioactive material in the process. Thus far, fresh construction fill has not been added here, due to the inaccessibility of these spots.

A second region of surface contamination is found just north of the Shuman building. It is not clear why material appears on the surface here, except that it is possible that some digging or excavation has occurred here in the past.

(B) Surface Soil Analyses

A total of 61 surface soil samples were gathered and analyzed on-site for gamma activity. Samples were normally stored 10 to 14 days to allow ingrowth of radium daughters. Concentrations of U-238, Ra-226 (from PB-214 and Bi-214), Ra-223, Pb-211 and Pb-212 were determined for each sample. Locations of surface soil samples are shown in Figures 7 and 8, and the results in Table 3.

In all soil samples nothing other than uranium and/or thorium decay chain nuclides and K-40 was detected. Off-site background samples were on the order of 2 pCi/g for Ra-226. On-site samples ranged from about 1 to 21,000 pCi/g Ra-226, and from less than 10 to 2,100 pCi/g U-238. In those cases where elevated levels of Ra-226 were detected, the concentrations of U-238 were generally anywhere from a factor of 2 to 10 lower. In cases of elevated sample activity, daughter products of both U-238 and U-235 were found.

In general, surface activity was limited to Area 2, as indicated by the surface beta-gamma measurements. Only two small regions in Area 1 showed contamination, both located near the access road across from the site offices.

In addition to on-site gamma analyses, a set of 12 samples were submitted to the RMC radiochemical laboratories for thorium and uranium radiochemical determinations. The

results of these measurements are shown in Table 4. They show that all samples contain high levels of Th-130. The ratio of Th-230 to Ra-226 (Bi-214) is about 20, which indicates an "enrichment" of thorium in these residues, as discussed in Section V.

(C) Subsurface Soil Analysis

Subsurface contamination was assessed by extensive "logging" of holes drilled through the landfill at locations known or thought to contain radioactive materials. Several holes were drilled in areas known to contain contamination, then additional holes were drilled outward in all directions until no further contamination was encountered. A total of 43 holes were drilled, (ll in Area 1 and 32 in Area 2), including 2 off-site water monitoring wells. All holes were drilled with a 6-inch auger and lined with 4-inch PVC casing. The location of these auger holes is shown in Figures 9 and 10.

Each hole was scanned with a 2-inch by 2-incm NaI(T1) detector and rate meter system for an initial indication of the location of subsurface contamination. Based on the initial scans, certain holes were selected for detailed gamma logging using the IG detector and MCA. A total of 19 holes were logged in this manner.

The results of the NaI(T1) counts and IG analyses are shown in Table 5. Concentrations of Bi-214, as determined

by the IG system, ranged from less than 1 to 19,000 pCi/q. For those holes where both NaI(T1) and IG counts were made, a good correlation between gross NaI(T1) counts and Ra-226 concentrations, as determined by in situ analysis of the daughter Bi-214 by the IG system, was found. Figure 11 is a plot of NaI(Tl) count rate versus IG determination of Ra-226, and shows a nearly linear relationship between the at concentrations near the action criteria. The conclusion is that the NaI(Tl) data is a good estimation soil, Ra-226 concentration in so long as the radionuclide mix is reasonably constant. In the case West Lake Landfill, this has been shown to be the case.

It was determined that the subsurface deposits extended beyond areas where surface radiation measurements exceeded action criteria. Figures 12 and 13 show the approximate area of subsurface contamination versus the area of elevated surface radiation levels. The total difference in areas is on the order of 5 acres.

The variations of contamination with depth are shown in Figure 14. As can be seen, the surface elevations vary by about 20 feet, with the highest elevations at locations of fresh fill. Contamination (> 5 pCi/g Ra-226) is found to extend from the surface, in several areas, to a depth of about 20 feet below surface, in two cases. In general, the subsurface contamination appears to be a continuous single layer, ranging from two to fifteen feet thick, located

between elevations of 455 feet and 480 feet and covering 16 acres total area.

In Figures 15-19, representations of the subsurface deposits are provided based on auger hole measurements. These representations are consistent with the operating history of the site, which suggests that the contaminated material was moved onto the site within a few days' time, and spread as cover over fill material. Thus, one would expect a fairly continuous, thin layer of contamination, as indicated by survey results.

(D) Water Analyses

A total of 37 water samples were taken during this survey, 4 in the fall of 1980, and the remainder in the spring and summer of 1981. Results of water analyses are shown in Table 6.

None of the sample alpha activities exceeded the MPC for Ra-226 (the most restrictive nuclide present) in water for unrestricted areas. Only one sample exceeded the EPA gross alpha activity guidelines for drinking water and that was a sample of standing water near the Shuman building. Several samples, including all the leachate treatment plant samples, exceeded the EPA gross beta drinking water standards. Subsequent isotopic analyses indicated that all the beta activity can be attributed to K-40. None of the off-site samples exceeded either EPA standard.

٤.

(E) Airborne Radioactivity Analyses

Both gaseous and particulate airborne radioactivity were sampled and analyzed during this study. Since it was known that the buried material consisted partially or totally of uranium ore residues, the sampling program concentrated on measuring radon and daughters in the air. Two methods were used: the first was a scintillation flask method for radon gas and the second was analysis of filter paper activity for particulate daughters.

A series of grab samples using the accumulator method (described in Appendix I) were taken between May and August of 1981. A total of 111 samples from 32 locations were collected. Results can be found in Table 7. Radon flux levels ranged from 0.2 pCi/sq.m-s in low background areas to 868 pCi/sq.m-s in areas of surface contamination.

At three locations, repetitive measurements were made over a period of two months. These results are plotted in Figure 20. As can be seen, significant fluctuations were observed at two locations. The fact that these fluctuations were real and not measurement artifacts was later confirmed by duplicate charcoal canister samples, as described below.

A total of 35 charcoal canister samples were gathered at 19 locations over a three month period. The results are listed in Table 8, and show levels ranging from 0.3 pCi/sq.m-s to 613 pCi/sq.m-s. On 24 different occasions,

the charcoal canisters and accumulator were placed in essentially the same locations, at the same time, for duplicate sampling. The results of this side-by-side study are presented in Table 9, and show generally good correlation between the two methods.

A set of 10 minute high volume particulate air samples were taken to determine both short-lived radon daughter concentrations and long-lived gross alpha activity. Sample results are shown in Table 10. The highest levels were detected in November, 1980, near and inside the Shuman building. Only these two samples exceed MPC for radon daughters for unrestricted areas.

In addition to the routine 10 minute samples, five 20 minute high volume air samples were taken and counted immediately on the IG gamma spectroscopy system. The purpose of these analyses was to detect the presence of Rn-219 daughters. All samples were taken near surface contamination and are listed in Table 11. In addition to Rn-222 daughter gamma activities, Rn-219 daughters were detected by measuring the low abundance gamma rays of Pb-211. Concentrations of Rn-219 daughters ranged from 6E-11 uCi/cc to 9E-10 uCi/cc.

(F) Vegetation Analysis

Vegetation samples included weed samples from on-site locations and farm crop samples (winter wheat) from the

northwest boundary of the landfill. This location was chosen due to possible run off from the fill into the farm field. No elevated activities were found in these samples.

(G) Non-Radiological Analysis

Six composite samples were submitted to the RMC Environmental Chemistry Laboratory for priority pollutant analysis. Five samples were taken from auger holes (one from Area 1 and four from Area 2) and the sixth from the West Lake leachate treatment plant sludge. The results, shown in Table 12, indicate a significant presence of organic solvents in Area 2 samples. The results of the leachate sludge analysis were not as high as any of the soil samples.

A chemical analysis of radioactive material from both areas was also performed by RMC labs and reported in Table 13. Results show elevated levels of barium and lead in most cases.

(H) Background Measurements and Remedial Action Criteria

Various off-site locations were selected for reference background measurements. The results of these measurements are summarized in Table 14, and can be compared with the established NRC target criteria for remedial action, for this project, shown in Table 15.

v. <u>CONCLUSIONS</u>

Based on survey results, it is evident that the West Lake Landfill contains two areas of surface and/or subsurface contamination. These deposits yield detectable external radiation levels in both areas. However, only an area of less than 0.1 acre in Area 1 exceeds 20 uR/hr, while about 8 acres in Area 2 exceeds the 20 uR/hr criteria. The highest reading detected in the most recent survey was 1.6 mR/hr in Area 2, near the Shuman Building.

Analyses of soil samples from both areas, as well as in situ measurements, show that the contaminants present at West Lake consist of uranium and uranium daughters. Chemical analyses reveal high concentrations of barium and sulfates in the radioactive deposits. These results tend to confirm the reports that this contaminated material is uranium and uranium ore, contained in leached barium sulfate residues, and presumably transferred from the Latty Avenue Site in Hazelwood, Missouri.

Analysis of soils also shows a high Th-230 to Ra-226 ratio. Since the target criteria for Ra-226 is the most restrictive of those contaminants present, it has been assumed that Ra-226 would be the controlling radionuclide for remedial action determinations. However, since Th-230 levels may be from 5 to 50 times higher than Ra-226 concentrations, this assumption may be erroneous. It is

separation of both uranium and radium from the ores, thus "depleting" the ores of uranium and radium, or, "enriching" the residues in thorium. This "enrichment" would also be evident in the U-235 chain, despite the short half-lives of Th-227 and Th-231, since the long-lived Pa-231 would remain in the residues. The concentrations of Pa-231, inferred from Ra-223 determinations, are also shown to be high.

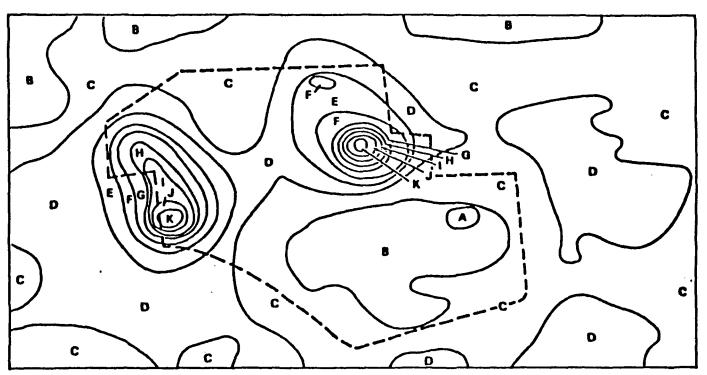
Auger hole measurements show that nearly is located below the contamination present surface, although a few locations near the northwest berm in Area 2 show surface, or near surface, deposits. These deposits range from 2 to 15 feet in thickness, and appear to form a contiguous layer covering an area of about 14 acres (68,000 sq.yd.) in Area 2 and about 2 acres (10,000 sq.yd.)in Area 1. If an average thickness of 2 yards is assumed, the estimated total volume is 150,000 cu.yd., which corresponds to roughly 170,000 tons of soil. This implies that if the source of contamination was the Latty Avenue material, the original volume of 40,000 tons has been diluted by a factor of about 4, which is not unexpected, with the continual movement and spreading of materials during fill operations.

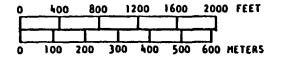
As discussed previously, the auger hole measurements detected deposits exceeding 5 pCi/g Ra-226 within a few feet of the surface, in areas where surface external radiation levels were indistinguishable from normal background levels.

These results confirm suspected difficulties in detecting buried materials with surface measurements, even when using relatively sensitive portable survey instruments.

At no time has radioactivity in off-site water samples been above any applicable guidelines. These results indicate that the buried ore residues are probably not soluble and are not moving off-site via ground water. Onsite samples have shown some gross beta activity above EPA drinking water guidelines (attributable to K-40); however, gross alpha and Ra-226 levels are within limits. The absence of significant contamination in the leachate liquid or sludge is consistent with the implication that the buried material is not moving through the landfill.

As would be expected, radon flux emanation rates were highest at locations of surface, or near surface, contamination. At locations where the material is covered by several feet of fill, flux levels are near background rates.


Particulate air samples established indicated the presence of Rn-222 and Rn-219 daughters near the locations of surface deposits. However, concentrations are very low, and do not exceed allowable levels for unrestricted areas, except in one location. In general, cover of a few feet of fill reduces airborne concentrations to near background levels.


The fact that West Lake is an active landfill presents several serious problems for performing radiological assessments and remedial actions. In the first place, as the landfill conditions change, so do the surface radiological characteristics. These changes were evident in the reduction of radiation levels in Area 1 between November 1980, and May 1981. It is possible that future landfill activities will obscure all detectable surface radiation levels at the site.

REFERENCES

- [1] U. S. Nuclear Regulatory Commission Letter Contract: NRC-02-080-034, August 13, 1980.
- [2] Missouri Department of Natural Resources, "Groundwater Investigation, West Lake Landfill, St. Louis County, September 30 through October 1, 1980."
- [3] St. Louis Post-Dispatch, May 30, 1976.
- [4] U. S. Nuclear Regulatory Commission, Office of Inspection and Enforcement, Region III, IE Inspection Report No. 76-01, June and August, 1976.
- [5] Crawford, D. J., "Radiological Characteristics of Rn-219", Health Physics, Vol. 39, No. 3, pp. 450.

 _	EST	MATED	LANDFI	LL	OUTLINE

GROSS COUNT CONVERSION SCALE					
LETTER LABEL	GAMMA EXPOSURE RATE* I m LEVEL (µR/hr)				
Y B C D E F G H I J K	- 6 6 - 8 8 - 10 10 - 13 13 - 17 17 - 24 24 - 33 33 - 45 45 - 62 62 - 84 84 - 116				

*AVERAGED OVER DETECTABLE FIELD-OF-VIEW AT 60 m ALTITUDE AND EXTRAPOLATED TO THE 1 m LEVEL INCLUDES 3.7 µR/hr COSMIC RADIATION.

Figure 2. West Lake Landfill aerial survey isopleths.

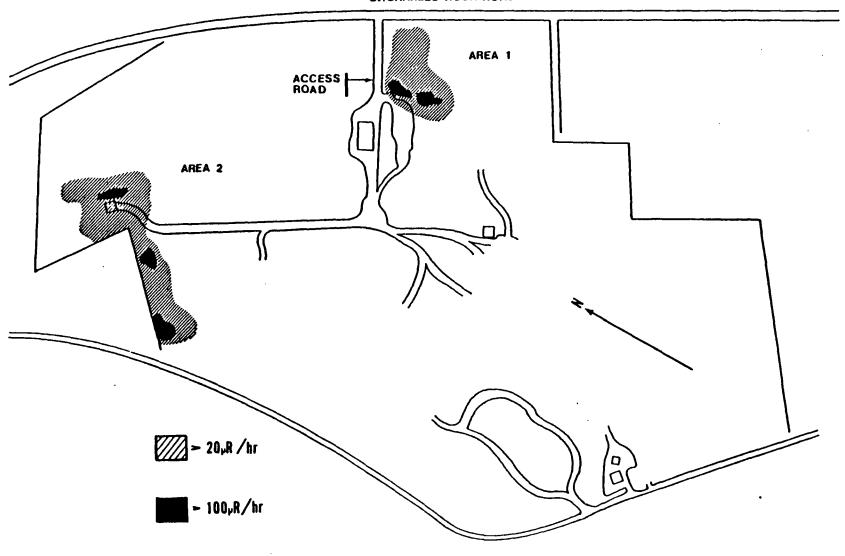


Figure 3. External gamma radiation levels, November 1980.

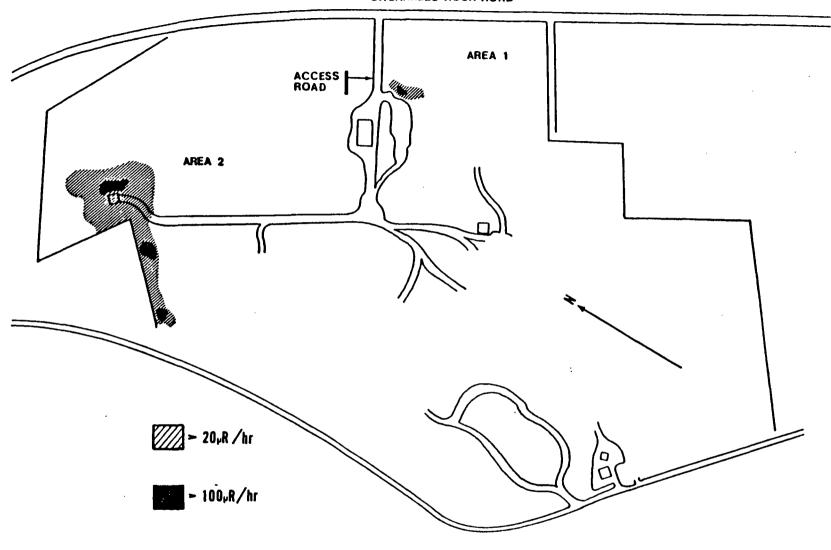


Figure 4. External gamma radiation levels, May, 1981

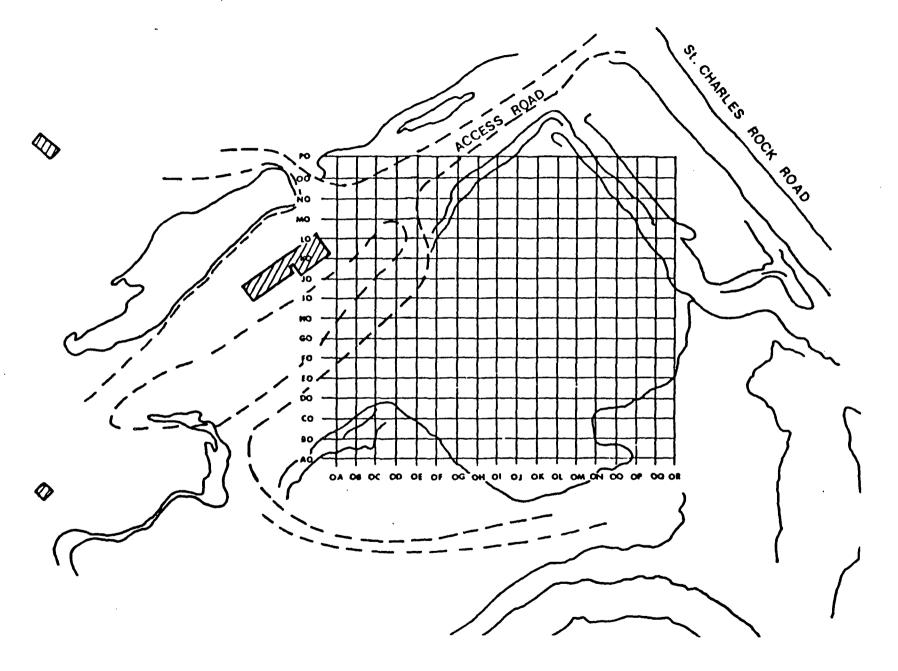


Figure 5. Grid locations for radiological survey, Area 1.

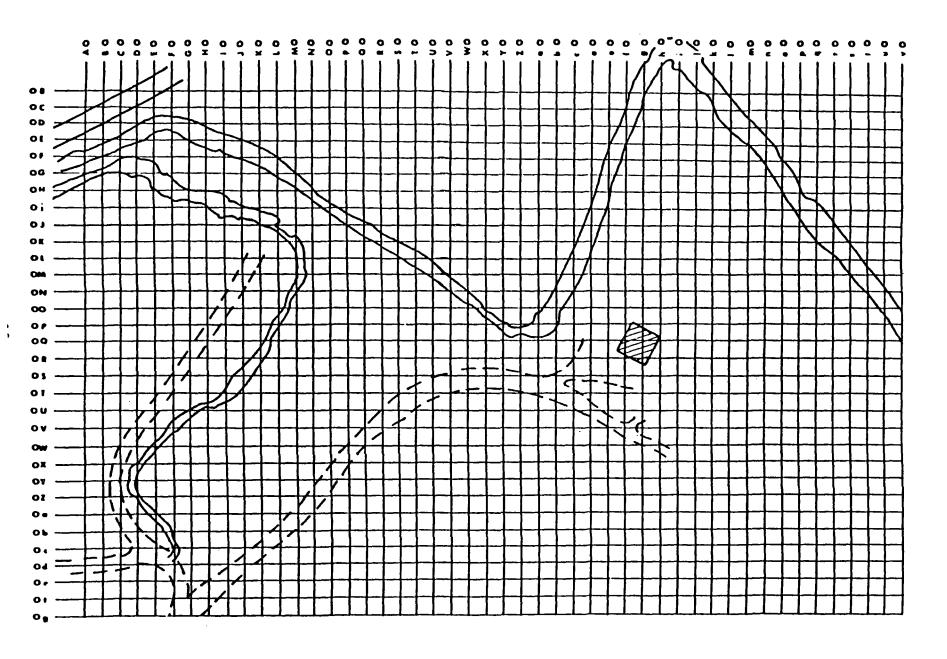


Figure 6. Grid locations for radiological survey, Area 2.

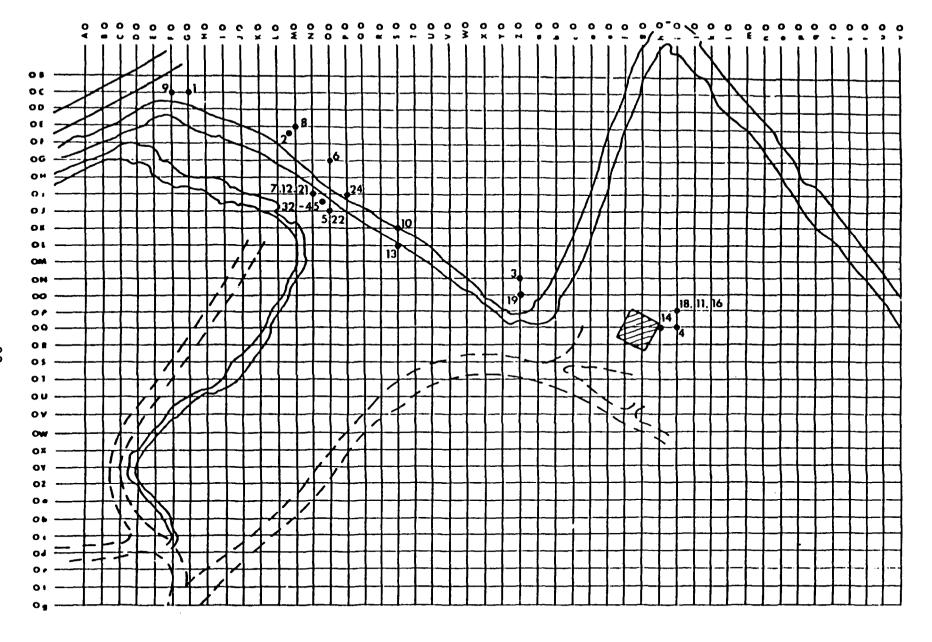
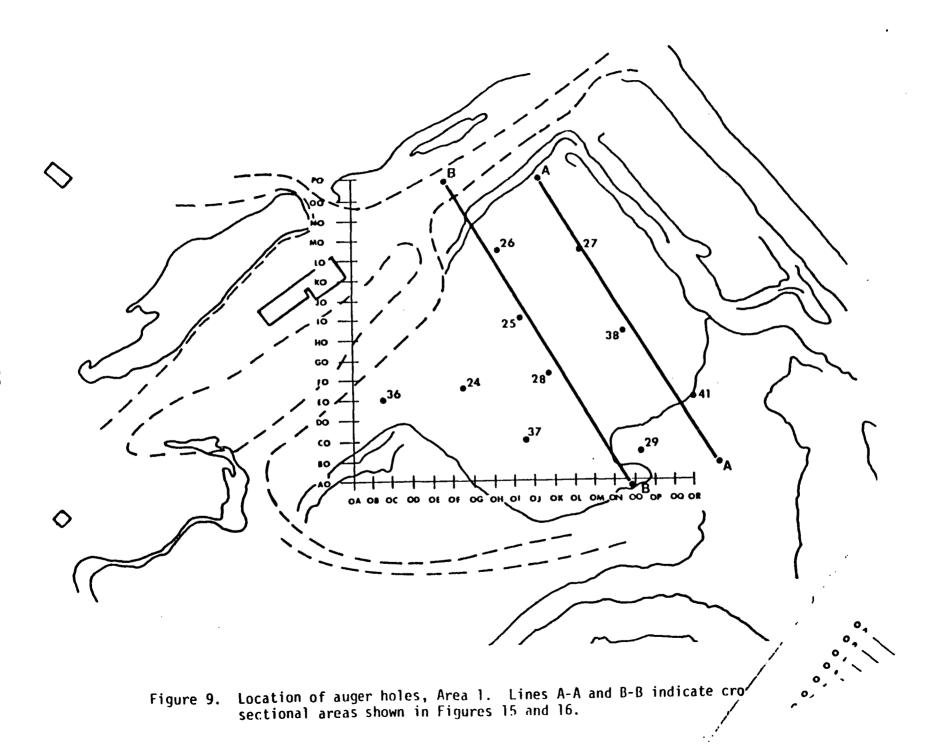



Figure 8. Location of surface soil samples, Area 2.

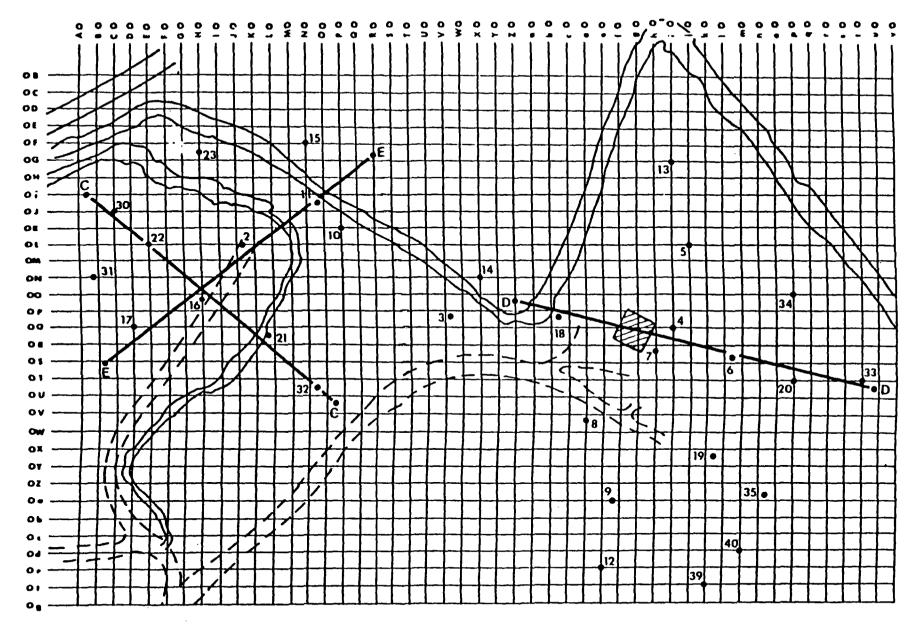


Figure 10. Location of auger holes, Area 2. Lines C-C, D-D, and E-E indicate cross sectional areas shown in Figures 17, 18, and 19.

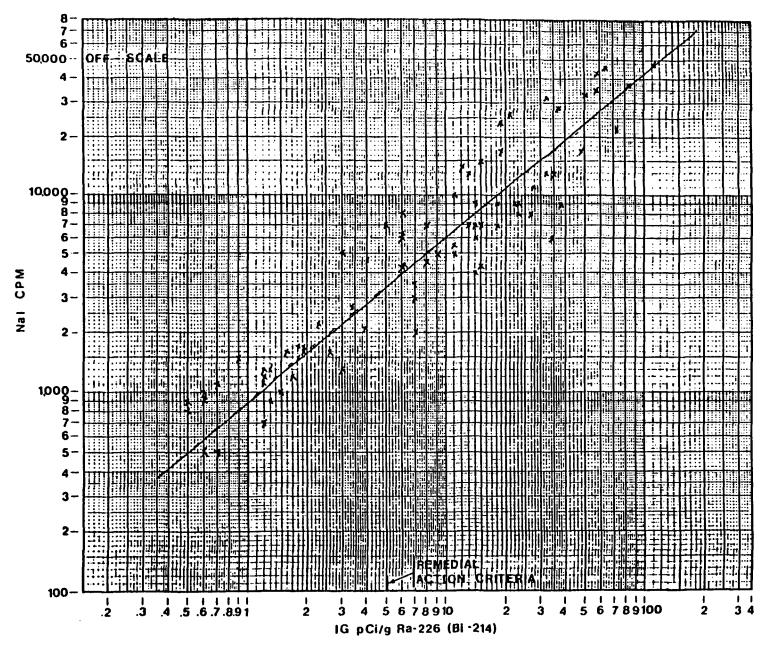


Figure 11. Auger hole NaI (T1) count rate versus Ra-226 concentration, as determined by the I.G. in situ measurements. Data is from bore holes 16, 32, 22, 21, 31, 6, 19 and 20.

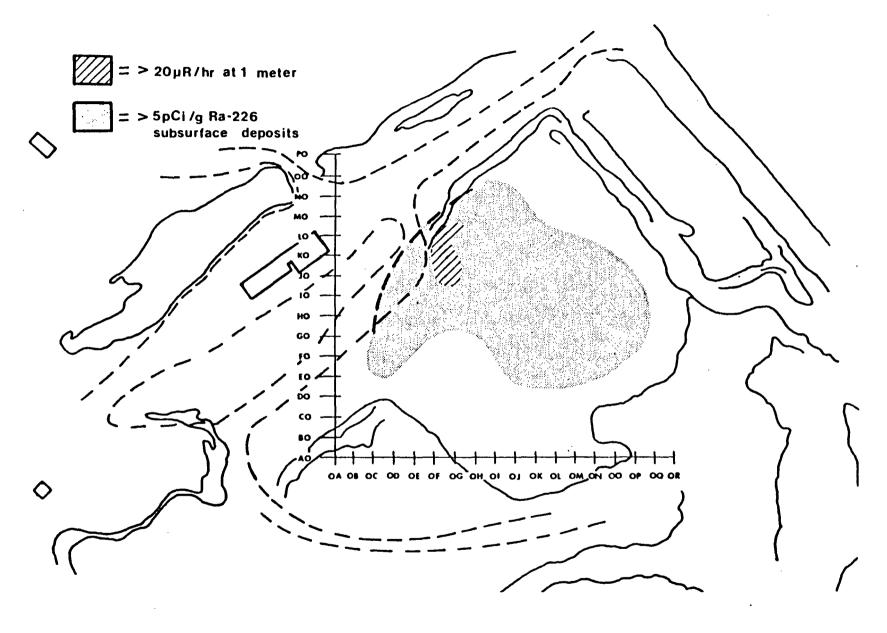


Figure 12. Location of subsurface contamination and surface radiation levels, Area 1. The shaded area shows a lateral contour for 5pCi/g Ra-226, regardless of depth. The cross hatched area shows the surface locations which exceed 20uR/hr at 1 meter.

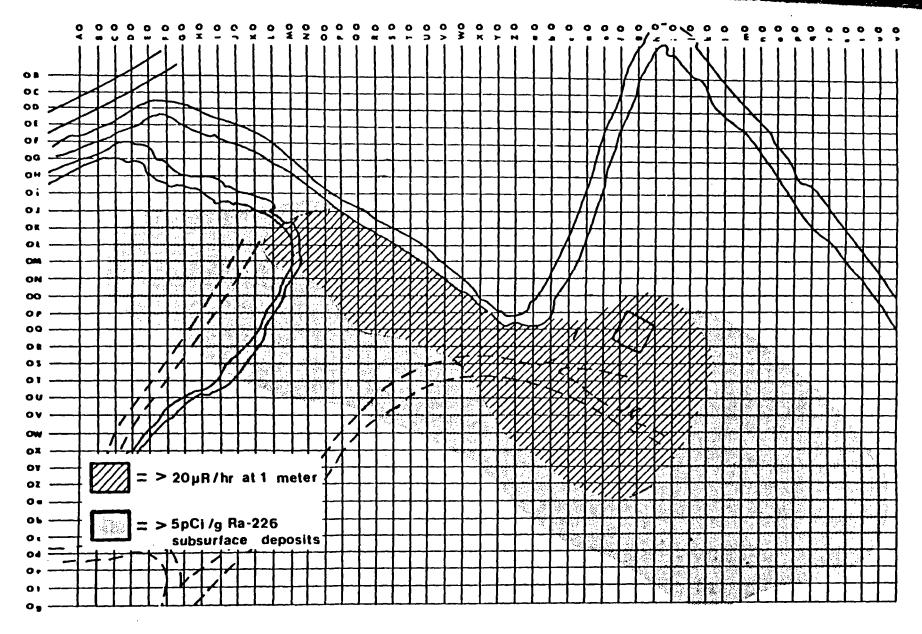


Figure 13. Location of subsurface contamination and surface radiation level, Area 2. The shaded area shows a lateral contour for 5pCi/g Ra-226, regardless of depth. The cross hatched area shows the surface location which exceeds 20uR/hr at 1 meter.

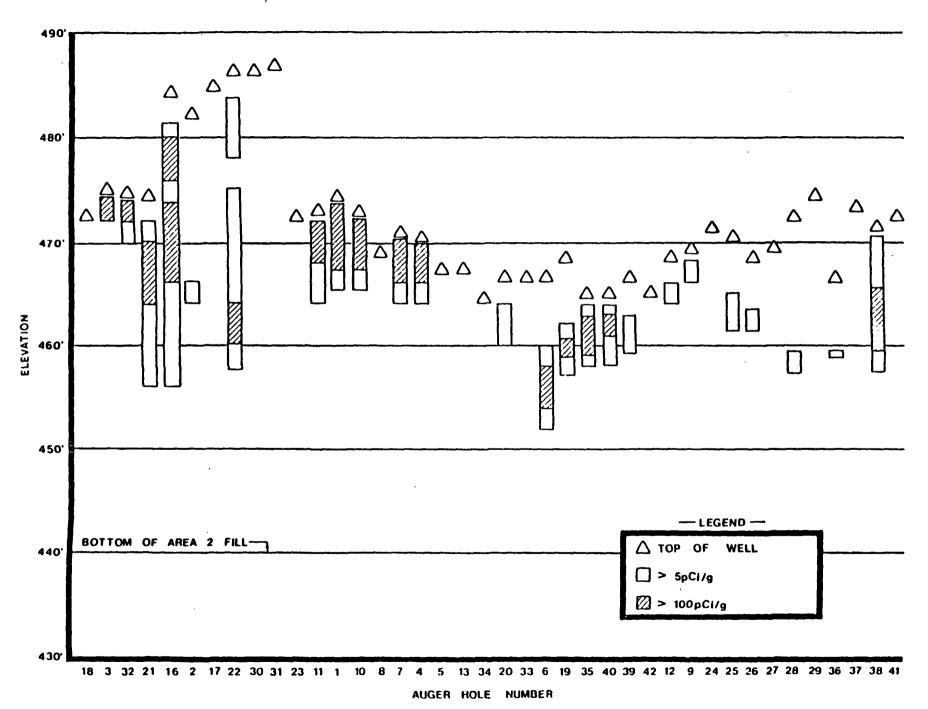


Figure 14. Auger hole elevations and location of contamination within each noise.

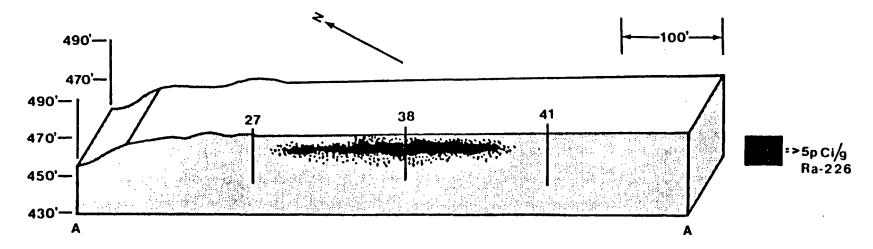


Figure 15. Cross section A-A (from Figure 9) showing subsurface deposits in Area 1.

The blackened areas indicate the estimated extent of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

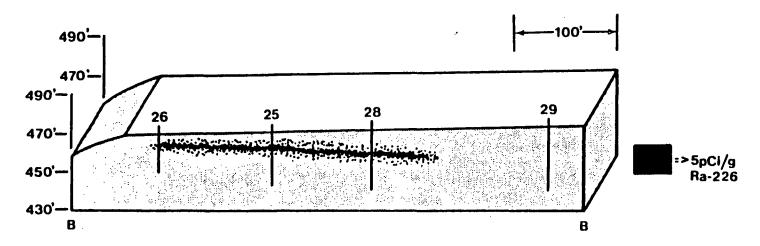


Figure 16. Cross section B-B (from Figure 9) showing subsurface deposits in Area 1. The blackened areas indicate the estimated extent of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

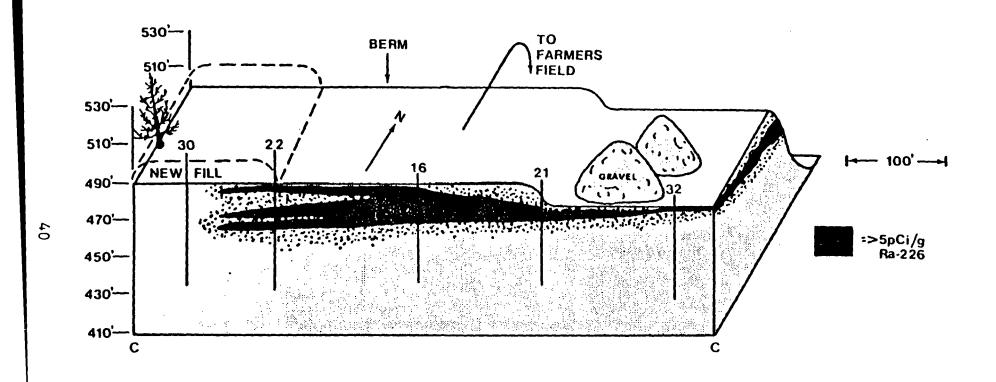


Figure 17. Cross section C-C (from Figure 10) showing subsurface deposits in Area 2.

Blackened areas indicate the estimated location of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

Figure 18. Cross section D-D (from Figure 10) showing subsurface deposits in Area 2. Blackened areas indicate the estimated location of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

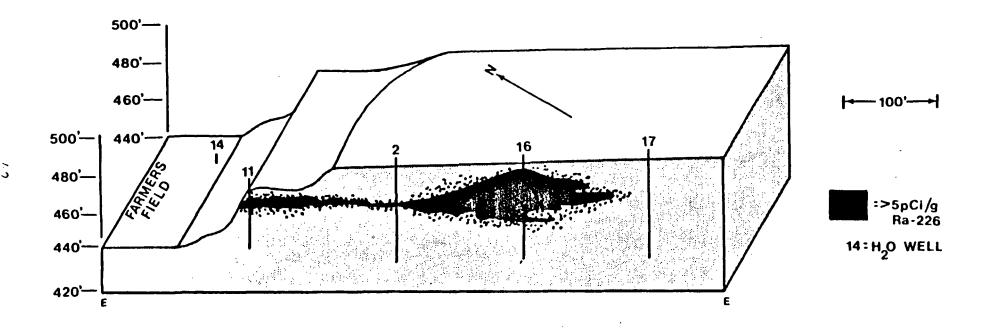


Figure 19. Cross section 1.1 (from Figure 10) showing subsurface deposits in Area 2. Blackened areas indicate the estimated location of contamination exceeding 5pCi/g Ra-226, based on surface and auger hole measurements.

Figure 20. Radon-222 flux measurements at three locations in Area 2, for May, 1981.

Table l

Gamma Radiation Levels and Beta-Gamma
Count Rates at Grid Locations in Area l

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
GOOE	1000	10	30	40
HOOE	900	9	60	50
IOOE	1200	11	30	50
J00E	800	8	40	40
KOOE	800	8	20	30
LOOE	1200	11	20	30
MOOE	800	8	40	40
NOOE	760	7	40	30
POOH	1100	10	50	50
POOI	1200	11	40	30
Q00I	1000	10	50	50
POOJ	1100	10	50	50
Q00J	1200	11	40	60
POOK	1100	10	40	30
Q00K	1200	11	30	50
COOF	900	9	40	50
D00F	900	9	30	40
EOOF	1100	10	40	50
FOOF	1200	11	30	40
GOOF	900	9	40	40
HOOF	1000	10	40	40
IOOF	1200	11	40	40
JOOF	2000	16	40	50
KOOF	2700	20	50	50
LOOF	2100	17	40 🔪	60
MOOF	1500	12	60	60
NOOF	1000	10	40	60
OOOF	800	8	30	30
EOOG	1100	10	20	30
F00G	1000	10	30	60
GOOG	900	9	40	40
H00G	1000	10	20	40
100G	1200	11	30	. 30
J00G	1000	10	30	40
KOOG	1600	13	60	70
LOOG	1300	11	40	50
MOOG	2200	17	60	50
NOOG	1300	11	30	40
000G	-	-	50	40
EOOH	1100	10	40	40
FOOH	900	9	30	30
GOOH	1100	10	30	50
ноон	1200	11	50	40
100H	1000	10	40	50

Table 1, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
J00H	1000	10	50	40
KOOH	1000	10	20	50
LOOH	1100		20	50
MOOH	1200	11	50	40
NOOH	1500	12	50	80
O00H	-	-	40	40
EOOI	1000	10	40	30
FOOI	1000	10	30	40
GOOI	800	8	30	30
HOOI	1000	10	50	40
1001	1100	10	30	60
J00I	1000	10	30	40
KOOI	900	9	30	40
LOOI	1000	10	30	40
MOOI	900	9	40	40
N00I	1100	10	40	40
0001	1100	10	30	50
E00J	1100	10	40	60
FOOJ	1200	11	30	40
GOOJ	1300	11	50	40
H00J	1200	11	50	50
100J	1100	10	50	50
J00J	1000	10	30	30
KOOJ	1100	10	40	40
LOOJ	1000	10	40	50
MOOJ	1200	11	50	40
NOOJ	900	9	40	30
000J	900	9	40	40
EOOK	1000	10	50	50
FOOK	900	9	40	50
GOOK	1000	10	50	50
HOOK	1100	10	50	60
100K	800	8	50	50
J00K	900 900	9 9 10	40	40
KOOK Look	1000	10	40 30	40
MOOK	900	10	30	30
NOOK	800	9	30	60
000K	900	9 8 9 8	40	40
EOOL	800	0	40	40
FOOL	1000	10	50	60
GOOL	900	70	40	50 40
HOOL	900	9 9	40	4 0 6 0
IOOL	1000	10	50	
JOOL	1000	10	50	50
KOOL	1000	10	50	60
LOOL	900	9	20	50 30
TOOP	300	7	20	30

Table 1, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (UR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)			
MOOL	1100	10	30	40			
NOOL	1000	10	50	40			
OOOL	900	9	20	40			
FOOM	900	7	· 30	40			
GOOM	1100	10	20	30			
HOOM	1000	10	· 30	40			
IOOM	1000	10	40	50			
J00M	800	8	30	40			
KOOM	1000	10	40	40			
LOOM	1100	10	40	30			
MOOM	1000	10	30	30			
NOOM	1000	10	30	50			
000M	1000	10	30	40			
FOON	900	9	30	50			
G00N	1000	10	30	30			
HOON	1100	10	30	30			
100N	900	9	40	30			
J00N	900	9	40	50			
KOON	800	8	40	60			
LOON	900	9	40	30			
MOON	1100	10	30	30			
G000	1000	10	40	60			
H000	1100	10	20	30			
1000	1000	10	20	30			
J000	1200	11	30	40			
K000	1000	10	40	50			

Table 2

Gamma Radiation Levels and Beta-Gamma
Count Rates at Grid Locations in Area 2

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
BOOF	600	10	40	40
C00E	600	10	20	20
COOF	600	10	20	30
COOG	700	îi	30	40
D00B	800	12	-	-
DOOC	800	12	-	_
DOOD	700	īī	20	40
DOOE	500	9	20	20
DOOF	600	10	20	20
DOOG	700	11	30	50
DOOH	800	12	50	50
DOOI	700	11	30	50
DOOJ	1100	15	30.	40
EOOA	500	9	-	_
EOOB	800	12	_	_
EOOC	800	12	-	-
EOOD	700	11	-	_
EOOE	700	11	30	30
EOOF	500	9	20	20
EOOG	500	9	30	30
EOOH	800	12	30	40
EOOI	700	11	30	30
E00J	900	13	30	30
FOOA	800	12	-	-
F00B	900	13	•	-
F00C	800	12	40	40
FOOD	900	13	30	30
FOOE	1000	14	30	40
FOOF	500	9	30	30
F00G	800	12	40	40
FOOH	700	11	50	50
FOOI	800	12	30	40
FOOJ	800	12	30	30
GOOA	800	12	-	~
GOOB	900	13	-	~
GOOC	800	12	30	40
GOOD	900	13	40	40
GOOE	700	11	30	40
GOOF	1000	14	30	40
GOOG	1000	14	40	40
GOOH	800	12	30	40
GOOI	800	12	30	30
GOOJ	800	12	20	40
HOOA	800	12	-	-

Table 2, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
H00B	800	12	-	
HOOC	800	12	30	30
HOOD	1000	14	30	40
HOOE	900	13	40	40
HOOF	800	12	30	30
H00G	800	12	30	40
ноон	700	11	30	30
H00I	600	10	30	30
HOOJ	900	13	30	30
HOOK	800	12	40	60
HOOL	800	12	30	50
A001	900	13	-	-
IOOB	1000	14	-	-
IOOC	1000	14	30	30
IOOD	900	13	40	40
IOOE	800	12	40	40
IOOF	800	12	20	40
100G	900	13	30	40
100H	800	12	30	30
1001	600	10	40	40
100J	900	13	40	40
IOOK	900	13	40	60
IOOL	1100	15	40	80
J00A	900	13	-	-
JOOB	800	12	-	-
100C	900	13	-	-
J00D	1000	14	30	50
J00E	900	13	40	40
J00F	1200	16	30	40
J00G	1000	14	40	40
J00H	800	12	40	40
J00I	600	10	40	50
J00J	900	13	30	30
JOOK	900	13	40	40
J00L	600	10	30	30
KOOB	1000	14	-	-
K00C	1100	15	•	
KOOD	1200	16	40	50
KOOE	1100	15	40	60
KOOF	2000	23	30	40
KOOG	1400	18	40	40
KOOH	1000	14	40	40
KOOI	1000	14	40	60
K00J	800	12	20	30
KOOK	800	12	30	30
KOOL	800	12	20	40
LOOB	1000	14	-	- .

Table 2, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)	
LOOC	1100	15	-		
LOOD	1800	21	50	50	
LOOE	2600	27	40	40	
LOOF	2500	27	940	1000	
* L00G	>50000	640	2100	2200	
LOOH	7000	55	70	120	
LOOI	2300	25	140	140	
LOOJ	1300	17	40	80	
LOOK	2100	24	50	50	
LOOL	700	11	40	60	
* L73E	>50000	400	-	-	
MOOB	1100	15	-	-	
MOOC	1500	19	-	-	
MOOD	1900	22 35	-	_	
MOOE	3700 8000	60	80	80	
MOOF MOOG	3600	35	80 50	90	
MOOG	5000	44	40	50	
MOOH	7000	55	80	50	
M00J	1800	21	60	90 70	
MOOK	900	13	30	40	
MOOL	900	13	30	60	
NOOB	1200	16	- -	-	
NOOC	1300	17	-	_	
NOOD	1600	20	_	=	
NOOE	2000	23	-	-	
NOOF	3300	32	-	_	
NOOG	1000	14	30	40	
N00H	1000	14	40	50	
NOOI	47000	210	680	1020	
NOOJ	2300	25	30	30	
NOOK	1000	14	40	50	
NOOL	900	13	30	50	
000C	1200	16	-	-	
Q00D	1100	15	-	-	
OOOE	1400	18	_	_	
000F	1400	18	50	60	
000G	900	13	40	40	
000н	1000	14 13	40 20	50	
1000 1000 *	900		4800	40	
* 000J 000K	>50000 1500	840 19	50	5200 50	
OOOL	600	10	20	20	
		15	_	2 0	
POOD POOE	1100 1200	16	-	_	
POOF	1000	14	40	60	
POOF	1000	14	30	50	
FUUG	1000	7.4	3 0	30	

Table 2, cont.

POOH	Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
POOI 1000 14 50 60 POOX 20000 115 240 300 POOK 20000 115 240 300 POOK 20000 115 240 300 POOK 20000 115 240 300 POOK 20000 500 9	POOH	1100	14	30	50
POOK 20000 114 400 50 POOK 20000 115 240 300 POOK 500 9 POON 500 9 QOOE 1000 14 QOOF 900 13 QOOG 1000 14 30 40 QOOF 900 13 QOOG 1000 14 30 40 QOOF 900 13 QOOK 800 12 30 40 QOOK 1300 17 70 70 QOOK 1300 17 70 70 QOOK 1300 13					
POOK 20000 115 240 300 POOM 500 9 - - POON 500 9 - - QOOE 1000 14 - - QOOF 900 13 - - QOOF 1000 14 30 40 QOOF 1000 14 30 40 QOOH 1000 14 30 40 QOOJ 800 12 30 40 QOOK 800 12 30 40 QOOK 800 12 30 40 QOOM 1300 17 70 70 QOOM 1300 14 - - ROOF 1000 14 - <td></td> <td></td> <td></td> <td></td> <td>50</td>					50
POOL 3300 32 130 130 POON 500 9 - - QOOF 1000 14 - - QOOF 900 13 - - QOOG 1000 14 30 40 QOOH 1000 14 30 40 QOOL 800 12 30 40 QOOK 1300 17 70 70 70 QOON 600 10 20 40 40 ROOF 1000 14 30 30 30 ROOH				240	300
POON 500 9		3300	32	130	130
Q00E	POOM	500		-	-
Q00F	POON			-	-
Q00G 1000 14 30 40 Q00H 1000 14 30 40 Q00I 800 12 30 60 Q00K 800 12 30 40 Q00K 800 12 30 40 Q00L 1200 16 40 40 Q00M 1300 17 70 70 Q00M 600 10 20 40 R00F 1000 14 - - R00G 900 13 - - R00H 900 13 40 40 R00I 1000 14 30 30 R00I 1000 14 30 30 R00I 1000 14 40 40 R00K 900 13 40 40 R00K 900 13 40 40 R00M 70 14 40 <td></td> <td></td> <td></td> <td>-</td> <td>-</td>				-	-
QOOH				_	-
Q001 800 12 30 60 Q000 800 12 30 40 Q000K 800 12 30 40 Q000K 800 12 30 40 Q000K 800 12 30 40 Q000K 1200 16 40 40 40 Q000M 1300 17 70 70 70 Q000M 600 10 20 40 Q000K 1000 14					
Q00J					
QOOK					
QOOL					
\$\begin{array}{c c c c c c c c c c c c c c c c c c c					
Q00N 600 10 20 40 R00F 1000 14	_				
ROOF 1000 14	_				
ROOG 900 13 40 40 A0 ROOH 900 13 40 A0 ROOH 900 14 30 30 ROOJ 800 12 40 40 ROOK 900 13 40 40 ROOK 900 13 40 40 ROOK 900 11 40 ROOK 900 11 40 60 60 ROOM 700 11 40 40 800N 700 11 40 800N 700 11 40 800N 700 11 40 800N 700 11 80 800 800 800 800 800 800 800 800				20	40
ROOH 900 13 40 40 ROOI 1000 14 30 30 ROOJ 800 12 40 40 ROOK 900 13 40 40 ROOK 900 13 40 40 ROOK 900 11 40 60 60 ROOM 700 11 40 50 ROOO 600 10 20 30 SOOG 800 12 SOOH 900 13 40 50 SOOK 900 13 40 50 SOOK 900 13 40 50 SOOK 900 13 40 SOOK 900 14 50 SOOK 900 13 40 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 10 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 12 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 SOOK 900 90 90 SOOK 900 90 90 SOOK 900 90 90 90 SOOK 900 90 90 90 90 90 90 90 90 90 90 90 90				-	-
ROOT 1000 14 30 30 30 ROOJ 800 12 40 40 ROOK 900 13 40 40 ROOK 900 13 40 40 ROOK 900 11 40 60 60 60 ROOM 700 11 40 40 50 ROOM 700 11 40 40 50 ROOO 600 10 20 30 SOOG 800 12 SOOH 900 13 40 50 60 SOOJ 1000 14 50 60 SOOJ 1000 14 50 60 SOOL 1200 16 40 40 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOM 6000 48 80 SOON 500 9 30 30 SOOO 2300 25 90 90 90 SOOP 800 12 30 40 TOOK 800 12 TOOH 1100 15 TOOH 1100 14 TOOJ 900 13 30 50 TOOK 1000 14 30 40 TOOK 1000 14 30 40 TOOK 1000 14 30 40 TOOK 1000 14 30 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 14 40 40 TOOK 1000 15 70 TOOK 2500 27 180 200 TOOK 2500 200 TOOK 2500 200 TOOK 2500 200 TOOK 2500 200 TOOK 2				40	40
ROOJ 800 12 40 40 ROOK 900 13 40 40 ROOL 1000 14 60 60 ROOM 700 11 40 40 ROON 700 11 40 50 ROOO 600 10 20 30 SOOG 800 12 - - SOOH 900 13 30 60 SOOI 900 13 40 50 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOD 2300 25 90 90 SOOP 800 12 - - TOOH 1100 15 - - TOOK 1000 14 40 40 T					
ROOK 900 13 40 40 ROOL 1000 14 60 60 ROOM 700 11 40 40 ROON 700 11 40 50 ROOO 600 10 20 30 SOOG 800 12 SOOH 900 13 30 60 SOOI 900 13 40 50 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOP 800 12 30 40 TOOG 800 12 - - TOOH 1100 14 - - TOOK 1000 14 30					
ROOL 1000 14 60 60 ROOM 700 11 40 40 ROON 700 11 40 50 ROOO 600 10 20 30 SOOG 800 12 SOOH 900 13 30 60 SOOI 900 13 40 50 SOOK 900 13 40 40 SOOK 900 13 40 40 SOOH 1200 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOP 800 12 30 40 TOOG 800 12 - - TOOH 1100 14 - - TOOK 1000 14 30 40 TOOM 1600 20 60					
R00M 700 11 40 40 R00N 700 11 40 50 R00O 600 10 20 30 S00G 800 12 - - S00H 900 13 30 60 S00I 900 13 40 50 S00J 1000 14 50 60 S00K 900 13 40 40 S00L 1200 16 40 40 S00M 6000 48 80 80 S00N 500 9 30 30 S00D 2300 25 90 90 S00P 800 12 30 40 T00G 800 12 - - T00H 1100 15 - - T00X 1000 14 - - T00K 1000 14 30 40 T00M 1600 20 60 70					
ROON 700 11 40 50 ROOO 600 10 20 30 SOOG 800 12 SOOH 900 13 30 60 SOOI 900 13 40 50 SOOK 900 13 40 40 SOOL 1200 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOO 2300 25 90 90 SOOP 800 12 30 40 TOOG 800 12					
R000 600 10 20 30 S00G 800 12 - - S00H 900 13 30 60 S00I 900 13 40 50 S00K 900 13 40 40 S00L 1200 16 40 40 S00M 6000 48 80 80 S00N 500 9 30 30 S00D 2300 25 90 90 S00P 800 12 - - T00G 800 12 - - T00H 1100 15 - - T00J 900 13 30 50 T00K 1000 14 30 40 T00K 1000 14 40 40 T00M 1600 20 60 70 T00N 2500 27 180 200 T000 3100 31 70 70 <td></td> <td></td> <td></td> <td></td> <td></td>					
SOOG 800 12 - - SOOH 900 13 30 60 SOOI 900 13 40 50 SOOK 900 13 40 40 SOOK 900 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOP 800 12 30 40 TOOG 800 12 - - TOOH 1100 14 - - - TOOK 1000 14 30 40 40 TOOK 1000 14 40 40 40 TOOM 1600 20 60 70 70 TOON 2500 27 180 200 TOOO 3100 31 70 70					
SOOH 900 13 30 60 SOOJ 1000 14 50 60 SOOK 900 13 40 40 SOOL 1200 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOP 800 12 90 90 SOOP 800 12 - - TOOH 1100 15 - - - TOOT 1000 14 - - - - TOOK 1000 14 30 40 40 TOOM 1600 20 60 70 70 TOON 2500 27 180 200 TOOO 3100 31 70 70				_	-
SOOI 900 13 40 50 SOOK 900 13 40 40 SOOL 1200 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOO 2300 25 90 90 SOOP 800 12 - - TOOG 800 12 - - TOOH 1100 15 - - TOOJ 900 13 30 50 TOOK 1000 14 30 40 TOOK 1000 14 40 40 TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70				30	60
SOOJ 1000 14 50 60 SOOK 900 13 40 40 SOOL 1200 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOO 2300 25 90 90 SOOP 800 12 - - TOOG 800 12 - - TOOH 1100 15 - - TOOJ 900 13 30 50 TOOK 1000 14 30 40 TOOK 1000 14 40 40 TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70					
SOOK 900 13 40 40 SOOL 1200 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOO 2300 25 90 90 SOOP 800 12 30 40 TOOG 800 12 - - TOOH 1100 15 - - - TOOI 1000 14 - - - - TOOK 1000 14 30 40 40 TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70					
SOOL 1200 16 40 40 SOOM 6000 48 80 80 SOON 500 9 30 30 SOOP 800 12 30 40 TOOG 800 12 - - TOOH 1100 15 - - TOOI 1000 14 - - TOOK 1000 14 30 40 TOOK 1000 14 40 40 TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70					
SOOM 6000 48 80 80 SOON 500 9 30 30 SOOD 2300 25 90 90 SOOP 800 12 30 40 TOOG 800 12 - - TOOH 1100 15 - - - TOOI 1000 14 -					
SOON 500 9 30 30 SOOD 2300 25 90 90 SOOP 800 12 30 40 TOOG 800 12 - - TOOH 1100 15 - - TOOI 1000 14 - - TOOK 1000 14 30 50 TOOK 1000 14 40 40 TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70					
S000 2300 25 90 90 S00P 800 12 30 40 T00G 800 12 - - T00H 1100 15 - - T00I 1000 14 - - T00J 900 13 30 50 T00K 1000 14 30 40 T00L 1000 14 40 40 T00M 1600 20 60 70 T00N 2500 27 180 200 T00O 3100 31 70 70			9		
T00G 800 12		2300		90	90
TOOG 800 12 - - TOOH 1100 15 - - TOOI 1000 14 - - TOOK 1000 14 30 40 TOOL 1000 14 40 40 TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70	SOOP	800		30	40
T00I 1000 14 - - T00J 900 13 30 50 T00K 1000 14 30 40 T00L 1000 14 40 40 T00M 1600 20 60 70 T00N 2500 27 180 200 T00O 3100 31 70 70	TOOG	800		-	· -
T00J 900 13 30 50 T00K 1000 14 30 40 T00L 1000 14 40 40 T00M 1600 20 60 70 T00N 2500 27 180 200 T00O 3100 31 70 70	TOOH	1100	15	-	-
TOOK 1000 14 30 40 TOOL 1000 14 40 40 TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70	TOOI			-	-
T00L 1000 14 40 40 T00M 1600 20 60 70 T00N 2500 27 180 200 T00O 3100 31 70 70					
TOOM 1600 20 60 70 TOON 2500 27 180 200 TOOO 3100 31 70 70					
T00N 2500 27 180 200 T00O 3100 31 70 70					
T000 3100 31 70 70					
TOOP 16000 98 600 700					
	TOOP	16000	98	600	700

Table 2, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
TOOQ	1500	19	30	40
TOOR	500	9.	30	40
TOOS	700	11	-	-
HOOU	700	11	-	-
UOOI	900	13	. -	-
UOOJ	800	12	-	-
UOOK	700	11	40	50
UOOL	900	13	50	50
MOOU	1000	14	40	50
UOON	2800	29	100	140
U000	3500	34	20	80
* U00P	>50000	450	1300	1500
ប្រ០០០	35000	170	400	720
UOOR	1500	19	40	40
UOOS	1000	14	-	-
VOOJ	800	12	-	-
V00K	900	13	40	40
VOOL	1000	14	50	50
VOOM	900	13	40	40
VOON	900	13	40	40
V000	13000	85	500	500
VOOP	4700	42	70	70
V00Q	12000	80	170	190
VOOR	500 0	44	100	100
V00S	700	11	-	-
WOOK	800	12	_	-
WOOL	800	12	30	30
WOOM	800	12	30	30
WOON	900	13	40	50 50
W000	1000	14	50	50
WOOP	2100	120	600	800
WOOQ	40000	190	900	1100
WOOR	20000	115	140	170
WOOS	1100	15	-	~
XOOK	900	13	-	-
XOOL	1100	15	40	40
XOOM	1100	15	40	40
XOON	1000	14	40	40
X000	1100	15	30	50
XOOP	4000	37	120	160
X00Q	12000	80	300	400
* X00R	>50000	740	1900	2000
X00S	1500	19	-	-
Y00I	1000	14	-	-
Y00J	1300	17	-	-
YOOK	1600	20	-	-
YOOL	1600	20	-	-

Table 2, cont.

NaI Grid Count Rate Location (c/min)		Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Cou Rate w/o windo (c/min)		
YOOM	1100	15	40	. 40		
YOON	3000	30	30	50		
Y000	1700	20	40	50		
YOOP	2100	24	40	60		
Y00Q	9000	66	200	280		
YOOR	40000	190	1000	1400		
Y005	3600	35	-	-		
Z001	800	10	40	40		
Z00J	1000	14	40	50		
Z00K	1800	21	70	90		
ZOOL	3200	32	80	80		
Z00M	3700	35	120	150		
ZOON	5000	44	110	130		
Z000	3300	32	80	120		
Z00P	1900	22	50	60		
Z00Q	2400	26	50	60		
ZOOR	12000	80	300	380		
Z00S	2600	27	-	_		
a00I	900	13	40	50		
a00J	900	13	20	40		
a00K	1300	17	50	90		
a00L	1800	21	60	80		
a00M	1900	22	120	140		
a00N	1200	16	90	100		
a000	1300	17	40	40		
a00P	1000	14	20	30		
200Q	2200	24	60	60		
a00R	2300	25	70	100		
a00S	2600 900	27	-	-		
Ь00І Ь00Ј	900	13	-	-		
P003	800	13	40	-		
D00P	700	12	40	50		
b00Q b00R	2400	11	30	70		
b00S	2400	26 26	60	90		
C00N	700	11	-	-		
C000	700	11	40	40		
COOP	1000	14	50	50		
c00Q	1300	17	60	80		
c00R	1900	22	50	80		
c00S	1800	21	50			
4000	1400	18	40	- 60		
d00P	1400	10				
d000			30	50		
d00Q	2000	22	30	60		
d00s	2000	23	60	70		
d005	900	23	-	-		
2001	300	13	-	-		

Table 2, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count R ate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)			
000u	1800	21	-	-			
400V	2200	24	50	50			
900A	2500	27	100	100			
900X	700	īi	30	30			
e00L	600	10	70	70			
e000	1700	14	•	-			
e950	1000	14	•	-			
e00P	-	-	70	100			
e95Q	1000	14	40	40			
e95R	1300	<u>1</u> 7	40	80			
e95S	1800	21	-	-			
e95T	2500	27	-	-			
e95U	3500	3 4	-	-			
e95V	3400	33	100	100			
e95W	4000	37	120	140			
e95X	3000	30	100	100			
e95Y	1500	19	50	60			
e952	1700	20	70	80			
e00a	2300	25	90	100			
fOOK	600	10	60	60			
fOOL	700	11	50	80			
f000	1100	15	40	60			
£57Q	3400	33	·	-			
fOOR	2700	28	60	60			
f00S	2700	28	-	- ·			
fOOT	4500	41	-	-			
£00U	6000	50		-			
f00V	50000	230	1060	1080			
fOOW	6000	50	120	140			
f00X	6000	50	100	100			
fOOY	1500	19	50	60			
f00Z	1000	14	40	40			
f00a	1000	14	30	50			
foom	-	•	60	60			
g00K	700	11	50	50			
g00L	600	10	80	90			
g00M	600	10	60	90			
g000	2000	23	80	110			
g00P	2000	23	50	90			
g00Q	3300	32	70	100			
gOOR	21000	120	300	420			
g00S	8000	62	•	•			
gOOT	6000	50	•	-			
g00U	15000	95	-	-			
g00V	11000	77	180	260			
g00W	7000	56	110	140			
g00X	2500	27	50	60			

Table 2, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
g00Y	2200	24	90	120
g00Z	1500	19	50	70
g00a	1000	14	30	30
ñ00K	700	11	30	30
hOOL	800	12	70	70
hOOM	900	13	70	80
hoon	1000	14	-	-
h000	3100	31	70	70
hOOP	17000	105	180	280
* h00Q	>50000	1050	4200 560	4200 660
hoor	27000	140 205	900 ⁻	1080
hoos	45000 4000	205 37	150	150
h00T h00U	6500	5 <i>7</i>	170	190
hOOV	10000	72	240	250
hOOW	3800	36	200	300
hOOX	1000	14	60	80
hOOY	1800	21	50	50
h00Z	700	11	20	30
h00a	700	11	40	40
h72P	-	-	8000	9400
iOOK	800	12	40	50
iOOL	900	13	60	60
iOOM	1700	20	90	110
iOON	8000	60	110 1000	110 1100
i000	36000	175 1600	7200	8400
* i00P * i00Q	>50000 >50000	1170	2800	3600
i00R	30000	155	900	1120
100K 100S	800	60	180	300
100T	1600	20	40	40
i00U	3000	30	130	180
i00V	2200	24	-	-
iOOW	1400	18	40	60
100X	1000	14	40	60
iOOY	1500	19	70	70
j00K	800	12	60	60
joor	900	13	60	80
joom	2000	23	90	90
joon	6000	49	130	160
j000	10000	70	130	180 420
j00P	20000	115	400 410	500
j00Q	16000	98	560	700
j00R	21000	120 22	70	90
j00s j00T	1900 1200	16	50	60
j00T j00U	1000	14	60	60
000	1000	7.4	~~	3.5

Table 2, cont.

Grid Location	NaI Count Rate (c/min)	Exposure Rate (uR/hr)	Beta-Gamma Count Rate w/window (c/min)	Beta-Gamma Count Rate w/o window (c/min)
joov	1800	21	70	70
joow	1200	16	70	80
joox	1000	14	50	50
j00Y	1100	15	60	60
k00L	1000	14	70	70
kOOM	1100	15	90	110
kOON	1000	14	60	90
k000	1000	14	70	90
k00P	1100	15	80	110
k00Q	1400	18	40	40
k00R	7500	58	140	180
k00S	1100	15	50	50
kOOT	1100	15	30	50
k00U	1700	20	60	60
k00V	1700	20	50	60
k00W	700	11	40	40
k00%	700	11	40	50
k00Y	1000	14	40	50
100L	900	13	70	70
100M	900	13	70	80
100N	800	12	70	70
1000	900	13	80	90
100P	700	11	60	70
100Q	900	13	50	50
100R	800	12	40	40
100s	1200	16	40	50
100T	1200	16	60	70
100U	1100	15	60	80
100V	900	13	30	40
m000	800	12	80	80
mOOP	700	11	60	60
Q00m	700	11	40	40
mOOR	900	13	30	50
m00S	1000	14	40	40

^{*} Reading >50,000 on NaI, reading was made with end window GM tube with beta shield.

Surface Soil Sample Radionuclide Concentrations (pCi/g), by Gamma Analysis

Location	Sample	K-40	U-238	Ra-226					Pb-211	Pb-212
G00C	Area 2, Berm	2.4E1		2.1E0	2.1E0	2.1E0				
i00Q	Area 2, Near Shuman Bld		3.0E2	8.6E2	9.6E2	7.6E2	1.6E2	3.1E2	3.6E2	
200N	Area 2, Road Surface		4.4El	6.0E2	6.6E2	5.4E2	2.0E1	2.0E1		
000J	Area 2, Near Berm		5.7E2	2.3E3	2.5E3	2.0E3	6.0E2	7.8E2	9.6E2	
O00G	Area 2, Near Berm	2.1E1		1.0El	1.1E1	9.6E0				
NOOI	Area 2, Near Berm		5.5E2	2.0E3	2.0E3	2.1E3	4.9E2	7,9E2	8.9E2	
MOOE	Area 2, Berm	1.3El		3.9El	4.2El	3.6E0				
F00C	Area 2, Berm	1.4E1		1.7E0	1.9E0	1.5E0				
SOOK	Area 2, Near Gravel Pile	3.2El		3.9E0	3.9E0					
i00P	Area 2, Near Shuman Bldg		8.3E2	4.0E3	4.4E3	3.6E3	9.6E2	9.6E2	1.5E3	
SOOL	Area 2, Near Gravel Pile	2.8E1		2.5E0	2.4E0	2.6E0				
h00Q	Area 2, Near Shuman Bldg		1.5E2	3.0El	3.4E2	2.6E2	1.7E2	1.9E2	1.5E2	
SPEC	Off-site Bkg Earth City	2.6El		2.5E0	2.5E0	2.5E0				
i00P	Area 2, Duplicate		6.4E2	2.7E3	3.0E3	2.4E3	2.3E3	1.2E3	1.1E3	
SPEC	Off-site Bkg Earth City	1.9El		2.7E0	2.5E0	2.9E0				
z000	Area 2, Road Surface		2.8E1	5.2El	5.7El	4.8El	3.1El	3.1El	3.4El	
SPEC	Leachate Treatment Sludge			6.9E0	7.9E0	5.9E0				
NOO I	Area 2, Near Berm		7.6E2	7.1E3	1.0E4	4.2E3	2.2E3	2.0E3	1.8E3	
SPEC	Area l, Base 6 Near Road		6.5E2	2.4E3	2.7E3	2.1E3	1.6E3	1.4E3	1.0E3	
P00I	Area 2, Near Berm	1.7El	1.0E0	7.0E0	7.3E0	6.8E0				
SPEC	Area 1, Base 7 Near Road		3.7El	2.7E2	3.4E2	2.1E2	2.9El		5.8El	2.2E0
SPEC	Leachate Treatment Sludge			2.3E0		2.3E0				
SPEC	Area 1, Base 6 Near Road		6.5E2	2.7E3	3.1E3	2.5E3	1.2E3	1.1E3	9.5E2	
SPEC	Area 1, Base 5 Brown Soil		3.9E2	1.1E3	1.6E3	8.2E2	2.8E2	3.8E2	3.7E2	
SPEC	Area 1, Base 5 Black Soil		3.1E2	6.8E2	7.8E2	5.8E2	3.1E2	3.2E2	3.2E2	
SPEC	Off-site Bkg Taussig Road	3.2El		2.5E0	2.4E0	2.6E0				2.4E0
SPEC	Area 1, Base 5 White Soil		2.1E3	2.1E4	2.3E4	1.9E4	5.3E3	5.3E3	5.0E3	
i00P	Area 2, Duplicate		6.2E2	3.5E3	3.7E3	3.2E3	1.3E3	1.3E3	1.7E3	
J00G	Area 1, Hot Spot		3.4El	9.7El	1.1E2	8.3E1	4.3El	4.3El	4.6El	
HOOM	Area 1, Low Level Area	2.2El		2.7E0	2.6E0	2.8E0				3.0E0
KOOF	Area l	2.0El		3.7E0	3.6E0	3.8E0				2.1E0
SPEC	Area l, East Berm	2.4El		2.6E0	2.2E0	2.9E0				

Table 3 cont.

Location	Sample	K-40	U-238	Ra-226	Pb-214	Bi-214	Ra-223	Rn-219	Pb-211	Pb-212
IOOL	Area l			2.9E0	3.2E0	2.6E0				2.3E0
SPEC	Area 1, East Berm	1.8El		2.4E0	2.2E0	2.6E0				
POOH	Area 1, Near Road	3.0El		4.3E0	5.2E0	3.3E0				1.8E0
N62H	Area l	2.5El		4.1E0	3.4E0	4.7E0				3.0E0
011J	Area 1, Near Berm		9.4E2	4.2E3	4.6E3	3.9E3	2.0E3	2.1E3	2.1E3	
L73E	Area 2, Side of Hill		3.8E2	1.1E3	1.2E3	1.0E3	4.5E2	4.6E2	3.8E2	
K00F	Area 1	3.9El		4.4E0	5.2E0	3.5E0				
N62H	Area 1, Fill	2.7El		3.1E0	3.1E0	3.1E0				1.3E0
NOOF	Area 1, Fill			2.6E0	3.0E0	2.1E0				2.6E0
J00G	Area 1, Fill			2.3E0	3.5E0	1.1E0				1.5E0
K66E	Area 1, Near Parking Lot			1.5E1	1.7El	1.3El				
1001	Area 1, Fill	3.1El		3.8E0		3.8E0				1.6E0

Soil Radiochemical Analysis

Table 4
Bi-214 from Gamma Spectroscopy

	Activity pCi/gm							
Sample	U-238	Th-230	Bi-214					
· ·	(A11 +/- 25%)	(A11 +/- 25%)	(All +/- 25%)					
Area l Surface (1980)	3.8	82	2.1					
Area 1 Surface (1980)	12	597	25					
Area l Borehole l (1980)	21	188	44					
Area 2 Surface (1980)	175	6,095	1,488					
Area 2 Surface (1980)	18	338	9.4					
Base 5 Surface (1981)	101	178,000	19,000					
Base 6 Surface (1981)	54	46,100	2,600					
Borehole 11 (1981)	82	29,200	1,800					
NllJ Surface (1981)	127	27,200	2,000					
OllJ Surface (1981)	1.0	52,000	3,900					

Auger Hole NaI Counts and IG Analysis

Table 5

Borehole #	1			Radionucli	de Concei	ntrations	(pCi/q)		
Depth	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
				1 250					
00	>50,000	1.6El	1.6E2	1.7E2	1.6E2				
01	>50,000	7.5E2	6.5E2	9 E 2	1.7E2	~~~~		1.4E2	
02	>50,000	2.2E4	2.4E4	1.9E4		*		4.2E3	
03	>50,000	4.0E3	3.0E3	4.8E3		1.1E3		2.1E2	
04	>50,000	1.3E3	1.2E3	1.4E3	9.3El				
05	20,000	2.4El		2.4El			8.0E0		
06	4,500	3.9E0	3.5E0	4.3E0			1.1E1		
08	2,200	2.3E0	2.3E0	2.2E0			1.4El		7.2E-1
10	2,000	2.3E0	2.4E0	2.2E0			1.3El		8.3E-1
12	1,500	1.9E0	2.2E0	1.6E0			1.3E1		
14	1,300	1.8E0	1.9E0	1.7E0			9.7E0		6.3E-1
16	800	1.3E0	1.2E0	1.3E0			1.0E1		3.9E-1
18	800	1.2E0	1.6E0	8.0E-1			3.3E0		3.0E-1
20	800	8.1E-1	7.4E-2	8.7E-1			1.0El		3.2E-1
22	500	6.5E-1	4.0E-1	9.0E-1			2.5E0		
24	150	2.5E-1	2.8E-1	2.1E-1			1.5E0		
26	1,000	6.3E-1	7.2E-1	5.4E-1			6.3E0		3.1E-1
28	1,300	8.7E-1	8.4E-1	8.9E-1			1.2El		5.7E-1
30	500	4.3E-1		4.3E-1			3.0E0		2.1E-1
32	700	1.3E0	1.E0	1.2E0			6.1E0		4.2E-1
34	1,400	2.4E0	2.5E0	2.2E0			6.1E0		5.4E-1
36	1,800	1.4E0	1.5E0	1.2E0			1.2E1	****	
Borehole !	12			Radionucli	ide Conce	ntrations	InCi/al	•	
	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
Depth 	GIUSS NAI	Na-220	[D 211	DI 211	0 230	Nu 223	N 10		
00	>50,000	8.4E2	7.8E2	8.4E2				6.4El	
01	>50,000	1.5E4	1.3E4	1.9E4	1.4E3				
02	>50,000	7.0E3	5.3E3	8.7E3					
03	1,400	2.3El	1.4E1	3.2El			1.2El		
05	2,300	6.2EO	5.8E0	6.6E0			8.9E0		
07	3,000	4.7E0	4.9E0	4.4E0			6.9E0		
09	1,800	3.5E0	4.2E0	2.8E0		3.6E0	8.2E0		
11	1,000	1.8E0	2.1E0	1.5E0			4.1E0		
13	600	1.7E0	1.4E0	2.0E0					
15	1,800	4.5E0	4.6E0	4.4E0		4.7E0	4.2E0		
* 3	-,000	.,	.,						

Table 5, cont.

Borehole # Depth	5, cont. Gross NaI	Ra-226	Pb-214	Radionuc: Bi-214	lide Conce U-238	entrations Ra-223	s [pCi/g] K-40	Pb-211	Pb-212
08	1,000	1.3E0	1.6E0	1.0E0			1.0E1		
10	3,000	4.3E0	4.3E0	4.3E0			4.7E0		2.0E0
12	1,700	2.1E0	1.9E0	2.3E0			2.9E0	2.2E0	
14	1,000	1.8E0	1.3E0	2.3E0			3.0E0		
16	700	8.3E-1	6.0E-1	1.1E0			2.1E0		
18	500	8.9E-1	6.8E-1	1.1E0			2.1E0		
Borehole #	6			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	2,000		7.3E0	8.3E0	6.4E0	7.4E0	9.4E0	. 1.2El	
02	2,000		0.5-0						
04	3,200	2.2El	2.5E0	3.0El	.0E1	2.0El		1.9E1	
06	3,500		2.1E0	2.2El	2.1E1	1.9El	~~~~	1.6El	
07	6,000	1.6El	1.5E1	1.7E1	1.3E1	8.1E0			
08	26,000	3.9El	2.1E1	2.2E1	2.1E1	1.8E1		1.5El	
09	>50,000		4.0El	4.1El	4.0E1	3.6El			
10	43,000		5.8El	5.3El	6.3E1	4.1El		4.01E	
11	>50,000		3.6E2	2.8E2	2.3E2	2.0E2		1.7E2	
12	16,000	4.4El	9.9El	9.1El	1.1E2	3.9El		5.6El	
13	2,600		6.4EO	7.2E0	5.5E0	4.4E0	8.5E0		~
15	1,100								
Borehole i	8			Radionucl	ide Conce	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	2,000		3.7E0	4.0E0	3.4E0	1.5E0	5.2E0		4.9E-1
02	1,500		1.4E0	1.5E0	1.3E0		6.5EO		
04	1,100		1.1E0	1.2E0	9.2E-1		4.7E0		
06	1,400		1.1E0	1.1E0	1.1E0		1.1E1		8.3E-1
08	1,400		1.1E0	1.1E0	1.1E0		1.1E1		8.E-1
10	1,500		1.2EO	1.2E0	1.1E0		1.1E1		
12	1,400		1,2E0	1.1E0	1.3E0		1.3E1		7.E-1
14	1,600		1.1E0	1.1E0	1.1E0		1.5E1		
16	1,000		1.1E0	1.3E0	8.2E-1		1.1E1		
18	1,400		1.2EO	1.4E	1.1E0		1.4E1		4.7E-1
20	1,700		1.8E0	2.0E0	1.6E0	1.1E0			8.4E-1

Borehole #	9 Gross NaI	U-238	Pb-214	Radionucl: Bi-214	ide Concer Ra-226	ntrations Ra-223	[pCi/g] K-40	Pb-211	Pb-212
00	1,400		2.2E0	2.3E0	2.0E0		~~~~		3.2E-1
02	22,000	4.6El	5.6El	5.6El	5.5El	3.5El	1.1E1	3.1E1	J.26-I
03	11,000		5.4E0	4.2E0	6.5E0		1.2E1		
04	2,000		1.3E0	1.3E0	1.4E0		9.3E0		
06	600		7.0E-1	8.4E-1	5.6E-1		3.8E0		
80	1,000		9.8E-1	7.8E-1	1.2E0		6.1E0		
10	900		8.0E-1	9.5E-1	6.5E-1		5.E0	1.6E0	
12	1,000		1.1E0	1.3E0	1.0E0		8.1E0		3.4E-1
14	700	2.7E0	7.7El	8.3E-1	7.0E-1		4.9E0		5.0E-1
16	1,100		1.0E0	1.0E0	1.0E0				4.7E-1
18	1,300			~~~~~					
20	1,000	7.6E-1	1.1E0	1.2E0	9.8E-1		8.7E0		
22	1,200		1.3E0	1.3E0	1.2E		9.5E0		5.3E-1
Borehole #	10			Radionucl	ide Conce	ntrations	[pCi/a]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	7,000		3.5E0	3.3E0	3.7E0	9.4E-1	3.6E0		
01	35,000		1.4E1	9.2E0	1.8E1	4.4E0	3.6E0		
02	>50,000		4.2E2	3.7E2	4.8E2	7.750	J.000		
03	>50,000		4.8E2	4.4E2	5.2E2		~~~~		
04	35,000		2.5El	1.8E1	3.El	~			
05	13,000		9.4E0	8.3E0	1.El				
06	4,500		1.2E1	1.4El	1.0E1	3.9E0		5.0E0	3.1E-1
08	2,000		1.3E1	1.1E1	1.5El				2.4E-1
10	1,800	7.3El	1.2E2	1.3E2	1.0E2	7.0El		4.5El	
12	2,000	1.2E1	1.6E1	1.8E1	1.3El	1.1E1	4.2E0	1.1El	
14	500	4.9E0	5.1E0	6.1E0	4.0E0	2.7E0	3.0E0		
Borehole #	11			Radionuc1	lide Conce	entrations	i InCi/al	•	
Depth	Gross NaI	Ra-226	Pb-214	Bi-214	U-238	Ra-223	K-40	Pb-211	Pb-212
00	>50,000	8.4El	6.6El	1.0E2		2.2El	5.6E0		
01	>50,000	3.6E3	2.9E3	4.4E3	7.7E2				
02	>50,000	1.3E4		1.3E4	2.9E3				
03	>50,000	1.7E3	1.1E3	.2E3					
04	30,000	7.0E0	5.3E0	8.6E0					
05	22,000	4.9E0	4.6E0	5.2E0		3.6E0	1.3E1	7.1E0	7.4E0

Table 5, cont. Radionuclide Concentrations [pCi/q] Borehole #11, cont. Ra-226 Pb-214 Bi-214 Depth Gross NaI U-238 Ra-223 K-40 Pb-211 Pb-212 -----_---____ _____ ____ -----20,000 06 7.1E0 7.4E0 6.7EO 4.6E0 1.5El 07 20,000 8.3E0 8.8E0 7.8E0 -----1.1El 08 20,000 1.3El 1.5El 1.2E1 2.0E1 1.0E1 5.8E0 20,000 09 Borehole #16 Radionuclide Concentrations [pCi/q] U-238 Depth Gross NaI Pb-214 Bi-214 Ra-226 Pb-211 Ra-223 K-40 Pb-212 -----____ -----____ ----------6,000 1.3E1 02 1.4El 1.6E1 1.1E1 4.3E0 6.2E0 6.1E0 03 9,000 ____ 1.8E1 2.2El 1.5El 6.9E0 7.9E0 8.8E0 2.8E1 5.9El 04 33,000 5.0El 4.2E1 2.0El 5.0E0 1.6E1 9.8El 05 48,000 6.5El 1.1E2 1.3E2 5.6El 1.0El 3.7El 35,000 06 1.2E2 1.4E2 1.0E2 7.8El 6.7EO 4.3El _____ 5.5El 07 9,000 ____ 4.8E1 3.1El 3.1El _____ 2.0El 8.2E-1 08 1.2E1 1.4El 1.5E1 1.2E1 4.8E0 3.7E0 6,000 -----1.7El 5.5E0 09 15,000 1.5E1 1.3El 7.0E0 4.1E0 5.8El 6.6E1 5.0E1 7.5El 10 35,000 2.3E0 2.5El _____ ____ 1.7E2 8.5E-1 >50,000 3.8E2 4.5E2 3.1E2 1.7E2 1.4E2 11 1.9E2 6.0E2 4.8E2 12 1.4E2 >50,000 5.1E2 3.0E2 2.8E0 13 >50,000 1.2E2 2,4E2 2.4E2 2.4E2 7.2El 2.6E1 >50,000 4.7E2 14 3.3E2 5.4E2 6.0E 2.4E2 4.0E2 15 9.2E3 6.9E3 1.1E4 >50,000 7.7E3 6.1E3 9.2E3 16 >50,000 -----_____ 2.6E1 8.2El 5.7E0 17 37,000 ____ 8.1El 8.3El 1.6El 1.5El 18 2.9El 3.0E1 2.7El 6.1E0 -----8,000 ____ 1.3E1 3.4El 4.2E1 2.6El 1.5E2 1.9El 19 6,000 Bor

rehole !	17			Radionucl	ide Conce	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	700		1.2E0	1.1E0	1.2E0		4.4E0		
02	600		5.4E-1	5.3E-1	5.4E-1		2.3E0		1.3E-1
04	300		3.3E-1	3.7E-1	2.9E-1		1.8E0		1.8E-1
06	250		2.6E-1	2.4E-1	2.7E-1		1.9E0		
08	300		2.4E-1	2.9E-1	1.9E-1				
10	300		2.9E-1	3.6E-1	2.2E-1		2.0E0		
12	400		2.7E-1		2.7E-1		3.0E0		2.1E-1
14	700		5.9E-1	5.3E-1	6.5E-1		4.7E0		6.5E-l

Table 5, cont.

Bor	ehole #	17, cont.			Radionucl:	ide Conce	ntrations	(pCi/a)		
	Depth		U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
	16	1,500		1.2E0		1.2E0		1.E1		
	18	800		1.5E0	1.5E0	1.4E0		5.3E0		
	20	3,000		8.5E0	9.0E0	8.0E0	2.9E0	6.5E0		
	22	1,000		1.6E0	1.7E0	1.5E0		4.3E0		
Bor	ehole #	18			Radionucl	ide Conce	ntrations	(pCi/al		
	Depth	Gross Nal	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
	00	1,000								
	02	1,500		1.3E0	1.3E0	1.2E0	7.2E-1	7.8E0		
	04	1,100		9.3E-1	1.0E0	8.3E-1	7.26-1	7.860		
	06	1,000		9.9E-1	1.1E0	8.8E-1		6.90E		
	08	600		4.1E-1	3.3E-1	4.8E-1		2.5E0		
	10	600		5.7E-1	6.5E-1	4.9E-1		2.5E0		
	10	1,100		7.7E-1	9.4E-1	6.1E-1		2.560		
	14	•		6.7E-1	7.2E-1	6.1E-1				
		1,000		7.6E-1	1.0E0	5.0E-1				4.8E-1
	16	1,000		7.06-1	1.020	3.0E-1				4.06-1
	18	1,200								
Bor	ehole #	119			Radionucl:	ide Conce	ntrations	[pCi/g]		
	Depth	Gross NaI	บ-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
	00	1,000		1.3E0	1.4E0	1.3E0		1.6E0		
	02	1,700		3.9E0	4.3E0	3.4E0	2.1E0	4.4E0		4.1E-1
	04	2,100		3.9E0	4.2E0	3.5E0		1.4El		8.1E-1
	06	4,400		6.0E0	6.3E0	5.8E0	2.3E0	1.0E1		8.6E-1
	07	28,000	3.3El	3.7El	3.5El	3.9El	2.2El	1.3E1	2.5El	
	08	>50,000	4.2E1	3.4E2	3.4E2	3.4E2	2.3E2	7.5E0	2.3E2	
	09	17,000	2.7E1	1.9E1	1.7E1	2.2El	5.3E0		1.3E1	
	10	4,600		4.2E0	3.9E0	4.4E0		6.1E0		
	12	1,000		6.5E-1	6.0E-1	7.0E-1		4.9E0		
	14	600		8.6E-1	1.1E0	6.4E-1				2.1E-1
	16	500		6.4E-1	7.1E-1	5.7E-1		2.4E0		

Table 5, cont.

orehole #	20			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	10,000		8.9E0	3.8E0	1.4E1	6.9E0	6.8E0	~~~~~	
01	23,000		7.2El	6.8E1	7.6El	4.3E1		3.9El	
02	9,000		1.4El	9.9E0	1.7El	2.9E0	1.0El 8.2E0	1.7El	
03	•		2.7E0	7.760	2.7E0	2.9EU	-	1./E1	
	2,200		-				6.0E0		
05	900		1.3E0	1.4E0	1.1E0		0.050	~~~~~	
07	700		1.2E0	1.2E0	1.1E0		9.9E0		
09	1,000		1.5E0	2.0E0	1.0E0		1.5El		
11	1,600		1.9E0	1.9E0	1.8E0		2.7El		1.3E0
13	1,200		1.2E0	1.3E0					1.2E0
15	1,100		1.2E0	1.3E0	1.1E0	~~~~	1.8E0		6.6E-1
17	500		7.0E-1	7.7E-1	6.4E-1			*****	3.6E-1
orehole #	21			Radionucl	ide Conce	ntrations	[pCi/g]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	14,000	2.1E1	3.4El	4.2E1	2.7El				
01	13,000		1.3El	1.3E1	1.2El	3.2E0	1.8E0		
02	1,300	~	1.2E0	9.5E-1	1.4E0		2.1E0		
03	1,300		1.3E0	1.3E0	1.3E0	~~~~			
04	7,000	*	5.4E0	5.2E0	5.6E0				
05	46,000	1.8E1	6.2El	6.0El	6.4El	3.2E1	9.2E0	2.1E1	
06	>50,000	1.7E1	6.6E2	5.4E2	7.8E2	J.201		3.3E2	
00 07	>50,000	4.5E2	3.2E3	2.8E3	3.7E3	8.3E2		1.5E3	
08	•		-		7.9El	2.9El		3.2El	
_	>50,000	3.2E1	7.3El	6.7El	3.5El	9.3E0	8.2E0	1.2E1	
09	32,000		3.6El	3.6El		1.9E0	5.6E0	1.261	
10	9,000		2.2El	2.8El	2.0El	• •	3.3E0		
11	4,300		1.5El	1.7El	1.2El				
12	6,000		5.8E0	6.2E0	5.4E0	2 0 50	5.9E0		
13	7,000		8.1E0	8.8E0	7.3E0	3.8E0	1.1El		8.5E-1
14	7,000		1.3El	1.5E1	1.1El	6.1E0	1.1El	 	
15	10,000	5.6E0	1.1El	1.3E1	9.4E0	5.3E0	9.4E0	5.1E0	6.7E-1
16	8,000		6.5E0	7.2E0	5.7E0	3.2E0	4.4E0		
17	,000		6.1E0	7.1E0	5.2E0	3.7E0	3.1E0		
18	3,500	5.6E0	5.7E6	6.4E0	4.4E9	2.7E0	3.0E0		
20	3,000		6.9E0	8.3E0	5.5E0	4.4E0			

9

Table 5, cont.

Borehole #	22 Gross NaI	U-238	Pb-214	Radionucl:	ide Conce Ra-226	ntrations Ra-223	K-40	Pb-211	Pb-212
00	10,000		2.4E1	2.7E1	2.1E1	1.6E1	2.7E0		
01	13,000	2.0El	3.2El	3.8E1	2.5E1	1.5E1	5.9E0	1.7El	5.6E-1
02	11,000	1.9El	2.8El	3.2El	2.5El	1.6El	4.1E0	1.5E1	
03	4,300		5.6E0	6.3EO	4.9E0	2.2E0	4.1E0		6.7E-1
04	5,500		1.1El	1.2E1	8.8E0	5.9E0	6.5E0		
06	4,500		8.1E0	9.4E0	6.7E0	5.4E0	3.8E0	5.7E0	3.6E-1
07	5,000	9.4E0	8.9E0	1.0El	7.3E0	5.4E0	6.3E0		7.0E-1
08	5,000	1.0E1	1.0El	1.3E1	8.4E0	7.1E0	3.7E0	6.6E0	
10	4,300		1.5El	1.8E1	1.2El	7.3E0	2.8E0	5.E0	
12	7,000		1.4El	1.7El	1.1E1		4.1E0		
13	4,000	1.5El	1.4El	1.6El	1.1E1	6.9E0	2.9E0	6.1E0	
14	7,000	9.1E0	1.3E1	1.6El	1.1E1	4.7E0	4.8E0		
15	9,000		2.3El	2.9El	1.7El	1.3E1	3.7E0	1.0E1	
16	8,000		2.3E1	2.8El	1.9El	1.6El	2.0E0	1.1E1	
17	3,500	7.3E0	7.4E0	8.3E0	6.4E0	5.0E0	2.3E0		
18	7,000	1.8E1	1.8E1	2.0El	1.5El	6.1E0			
19	9,000		1.7E1	2.0El	1.4El	1.2El	3.8E0		
20	13,000		3.5El	4.0El	3.0El	2.5El	3.7E0	1.5El	
21	10,000		1.1El	1.1E1	1.1E1	3.5E0	3.6E0		
22	24,000		1.9El	1.6El	2.1El	4.1E0	4.3E0	6.3E0	
23	>50,000		5.8E3	5.8E3	5.8E3	3.0E2		2.6E2	
24	>50,000		7.0E2	6.4E2	7.5E2	2.9E2		3.3E2	~~~~~
25	>50,000		6.4E2	6.4E2	6.4E2	3.6E2		3.4E2	
Borehole #	31			Radionucl:	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	1,200		6.5E-1	5.6E-1	7.4E-1		7.8E0		5.6E-1
02	<u>9</u> 00		5.6E-l	5.9E-1	5.3E-1				4.5E-1
04	1,500		9.1E-1	9.3E-1	8.9E-1		6.5E0	1.7E0	
06	1,000		6.3E-1	6.4E-1	6.3E-1		6.1E0		~
08	800		5.1E-1	4.5E-1	5.7E-1				
10	800		4.9E-1	5.2E-1	4.5E-1				3.8E-1
12	1,500		3.7E-1	3.7E-1			3.7E0		
14	1,100		7.1E-1		7.1E-1		1.3E1		
16	1,000		5.1E-1		5.1E-1		4.0E0		3.1E-1
18	1,500	8.5E-1	8.1E-1	8.6E-1	7.7E-1		8.1E0		8.0E-1

Borehole #	31, cont.			Radionucl	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
20	600		4.9E-1	4.8E-1	5.0E-1				6.2E-1
22	1,300		7.1E-1	8.4E-1	5.9E-1				
24	1,300		1.1E0	1.1E-1	1.0E0		6.2E0		
Borehole #	32			Radionucl:	ide Conce	ntrations	[pCi/q]		
Depth	Gross NaI	U-238	Pb-214	Bi-214	Ra-226	Ra-223	K-40	Pb-211	Pb-212
00	16,000		8.3E0	6.5E0	1.0E1	2.0E0	2.2E0		
01	>50,000		1.5E2	1.4E2	1.6E2	1.1E2		6.9El	
02	17,000		4.9El	4.1E1	5.7El	2.0El	3.9E0	1.9El	
03	5,000		3.1E0	2.1E0	4.2E0				
04	1,300		3.1E0	2.1E0	4.2E0				
06	1,700		1.7E0	1.9E0	1.4E0				3.1E-1
08	1,700		1.9E0	2.2E0	1.6E0		8.2E0		3.8E-1
10	1,700		1.8E0	2.0E0	1.5E0		1.2E1		
12	1,600		1.6E0	1.7E0	1.5E0		1.2E1		6.0E-1
14	1,600		2.6E0	2.7E0	2.4E0				
16	1,800		1.7E0	1.5E0	1.9E0				7.1E-1
18	1,900		9.3E-1	8.7E-1	9.9E-1		1.4E1		8.5E-1

Auger Hole NaI (T1) Counts

Table 5, cont.

Bor	ehole #2	Bore	hole #7	Bor	ehole #12
Depth	NaI CPM	Depth	NaI CPM	Depth	NaI CPM
ft		ft		ft	
00	700	00	>50,000	90	1,000
01	1,300	01	>50,000	01	1,500
02	1,000	02	>50,000	02	1,300
03	1,000	03	23,000	03	2,000
04	1,400	04	7,000	04	3,000
05	1,000	05	3,600	05	3,500
06	1,400	06	1,300	06	1,500
07	1,400	07	1,000	07	1,000
08	1,300	08	1,000	08	800
09	1,200	09	1,100	09	700
10	1,000	10	1,000	10	700
11	700	11	1,100	11	500
12	800	12	1,200	12	500
13	800	13	1,400	13	350
14	1,200	14	1,200	14	350
15	3,500	15	1,200	15	500
16	11,000	16	1,400	16	350
17	2,500	17	1,500	17	900
18	1,400	18	1,700	18	900
19	1,000	19	1,700	19	1,000
20	1,000	20	4,000	20	1,500
21	800	21	2,200	21	1,500
22	1,000	22	2,000	22	1,300
23	800			23	500
24	800			. 24	600
25 26	800				
26 26	1,500				
27	1,500 1,000				
28	800				
29	600				
30	600				
31	500				
32	700				
33	1,000				
34	1,000				
35	1,000				
Bore	hole #13	Bore	hole #23	Bor	ehole #24
00	900	00	1,100		
01	1,300	01	1,100	01	1,200
02	800	02	700	02	2,000
03	600	03	1,200	03	1,600
04	700	04	1,300	04	1,800
05	400	05	900	05	1,600
06	500	06	600	06	1,500
_				3 0	-,,,,,,

Table 5, cont.

Bore	hole #13	Bore	hole #23	ehole #24	
Depth	NaI CPM	Depth	NaI CPM	Depth	NaI CPM
ft 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	400 700 1,000 900 600 600 500 600 700 1,000 800 900 800 700 900	ft 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	400 300 300 300 400 400 500 600 400 500 700 600 600 400	ft 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1,000 1,000 300 700 1,000 1,200 1,500 700 600 500 1,000 900 1,200 1,500 800 500
	hole #25	Bore	hole #26	Bor	ehole #27
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1,200 1,900 1,800 2,600 2,400 2,200 12,000 19,000 1,700 800 1,700 800 500 700 800 500 700 400 400 400 400 600	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26	1,600 2,500 2,600 3,500 19,000 10,000 2,100 1,300 500 500 500 600 1,100 800 600 900 1,200 1,200 1,200 1,200 1,200 1,200 800	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1,300 1,800 1,200 1,200 1,300 600 700 300 300 600 700 700 600 1,000 1,300 800 900 500 700 1,000

Table 5, cont.

Borehole #25		Borehole #26		Bor	Borehole #27	
Depth	NaI CPM	Depth	NaI CPM	Depth	NaI CPM	
ft 27 28 29	400 500 600	ft 27 28 29	500 500 600			
30 31 32	700 700 1,000	30 31 32	500 600 700			
33 34 35	1,700 1,100 1,000	33 34 35	900 600 800			
36 37 38	1,600 1,700 1,100	36 37 38 39	1,500 1,500 1,000 1,000	 		
Bore	ehole #28		hole #29	Bore	ehole #30	
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	1,600 1,200 600 700 1,000 1,500 1,400 1,400 1,800 1,800 2,800 2,800 2,900 9,000 32,000 4,200 2,000 1,600 1,200 1,300	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	1,300 1,300 1,300 1,000 800 1,200 1,800 1,400 2,000 2,000 1,200 1,200 1,500 1,700 1,700 1,300 600 500 500	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	600 600 800 300 500 400 500 300 600 1,100 600 800 700 1,200 800 300 250 400 500	
21 22 23 	1,100 500 500	21 22 23 	600 600 500	21 22 23 24 25	700 600 500 400 600	
 ,		 		26 27 28 29 30	1,200 500 300 300 600	
				31 32 33	500 400 400	

Table 5, cont.

Borehole #33		Bore	Borehole #34		Borehole #35	
Depth	NaI CPM	Depth	NaI CPM	Depth	NaI CPM	
ft 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	1,900 1,200 800 700 600 1,000 1,000 800 800 500 400 300 400 500 900 900	ft 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	2,600 1,300 1,400 1,000 1,500 1,500 1,500 1,000 400 300 400 500 800 700 500 600 900 600 700	ft 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	10,000 38,000 >50,000 >50,000 22,000 22,000 1,500 1,500 700 700 600 00 1,400 1,400 1,400 1,400 600	
20 21 22 	1,100 800 800 	20 21 22 23	800 400 300 300 300 rehole #37	20 21 22 	600 600 700 	
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	1,200 700 900 1,600 1,800 2,500 5,000 1,700 1,000 800 700 700 800 500 600 900 800 700 600	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1,500 1,400 1,100 1,100 1,200 1,500 1,700 1,600 1,600 1,600 1,600 1,700 1,900 1,800 1,800 1,000 1,000 1,500 600 600 500	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	7.000 7,000 8,000 12,000 22,000 >50,000 >50,000 >50,000 >50,000 21,000 7,000 1,000 1,000 600 800 600 400 700 1,000	

Table 5, cont.

Borehole #39		Borehole #40		Borehole #41	
Depth	NaI CPM	Depth	NaI CPM	Depth	NaI CPM
ft		ft		ft	
01	3,000	01	7,000	01	1,400
02	11,000	02	26,000	02	1,400
03	4,000	03	6,000	03	1,200
04	1,900	04	2,100	04	1,500
05	1,000	0.5	1,600	05	1,900
06	1,500	06	1,900	06	1,200
07	1,000	07	3,500	07	700
08	700	08	5,000	08	600
09	500	09	3,200	09	700
10	500	10	1,500	10	1,000
11	400	11	800	11	1,000
12	500	12	1,200	12	1,300
13	400	13	1,500	13	1,000
14	800	14	1,500	14	600
15	1,200	15	1,300	15	600
16	1,300	16	1,000	16	600
17	900	17	800	17	500
18	600	18	600	18	500
19	700	19	1,200	19	200
20	1,000	20	1,200	20	200
		21	1,300	21	300
		22	1,300	22	300
				23	300
				24	500

Water Sample Analysis Results

Table 6

	mple No.	Date	Location	Gross	Alpha	Gross	Beta
				pCi/l		pCi/l	
	7001	6/8/81	Surface Water North of Shuman Building	3.11E0	+/-8.8%	2.25E1	+/-3.0%
	7002	6/9/81	Surface Water West of Shuman Building	8.00E0	+/-9.9%	2.34E1	+/-4.48
	7003	6/10/81	Drainage Pipe at NE Boundary			9.88E0	
	7004	6/11/81	Stream Beneath Earth City Expressway (offsite)	1.04E0	+/-148	1.97El	
	7009	6/29/81	Borehole #14	4.50E0	+/-398	2.23El	+/-148
	7010	6/29/81	Borehole #15	2.60E0	+/-528	1.52El	+/-178
	7011	6/18/81	Borehole #14	3.12EO	+/-478	1.06El	+/-20%
			Borehole #15				+/-16%
	7013	6/3/81	Middle Leachate Treatment Lagoon	-1.04E0	+/-275%	1.30E2	+/-5.7%
			North Leachate Treatment Lagoon	1.35E0	+/-55%	1.36E2	+/-5.5%
_	7015	6/3/81	South Leachment Treatment Lagoon		+/-55%		+/-6.4%
			Sludge Drainage Pipe		+/-2348		+/-6.5%
			Borehole #14		+/-115%		+/-11%
			Borehole #15			3.61El	
	7019	6/29/81	Surface Pond North of Entrance on St. Charles	1.91E0	+/-60%	3.00El	+/-12%
			Rock Road				
	7020	6/17/81	Borehole #15				+/-12%
	7021	7/20/81	Tap Water			2.91E1	
	7022	7/10/81	Middle Leachate Treatment Lagoon	3.45EO	+/-141%		+/8
	7023	7/10/81	North Leachate Treatment Lagoon	-2.95E0	+/-189%	1.22E2	+/-5.8%
	7024	7/10/81	South Leachment Treatment Lagoon		+/-179%		+/-6.9%
	7025	7/21/81	Settling Pond at North Boundary of Site				+/-11%
	7026	6/17/81	Borehole #14	-8.66E-1	+/-332%	3.89El	+/-10%
	7027	5/11/81	Standing Water at Earth City Background Site	1.04E0	+/-82%	3.25El	+/-11%
	7028	4/29/81	Standing Water at NW Corner of Shuman Building	4.52El			
			West Ditch Runoff	-2.08E0	+/-1318		+/-1378
			Pond at North Boundary of Site	5.20E-1	+/-115%	3.51El	+/-118
	7031	7/28/81	Surface Pond North of Entrance on St. Charles	-1.39E0	+/-203	2.63El	+/-13%
	7022	7/30/01	Rock Road Missouri River Water	-2 KEN	+/-1025	2.6381	+/-13%
							+/-12%
			Missouri River Water	-1.39E0	T/-2039	1.03E2	+/-6.38
			North Leachate Treatment Lagoon		+/-82%		+/-7.0%
	1033	1/20/81	Middle Leachate Treatment Lagoon	1.0460	17-028	0.4761	., ,.08

7

Table 6, cont.

Sample No.		Location	Gross	Alpha	Gross	Beta
7036	7/28/81	South Leachate Treatment Lagoon	pCi/l -2.95E0		pCi/l 6.96El	+/-7.78
1 2	11/80 10/80	Leachate Observation Well Off-site Sample Well 3, West Boundary of Landfill		+/-120% +/-17%		+/-25% +/-10%
3 4	10/80 11/80	Off-site Sample Well 4, North Boundary of Landfill Settling Pond North of Landfill	2.9E0 2.9E0	+/-29% +/-150%	7.6E0 2.6E1	+/-26% +/-110%
Cample				Tentoni	c Analys	l o
Sample No.	Date	Location	K-40	pCi/l		
	* . * .	North Leachate Treatment Lagoon	1.38E2		1.20E0	+/-21%
7016	6/3/81	South Leachate Treatment Lagoon Sludge Drainage Pipe Middle Leachate Treatment Lagoon	1.36E2 1.02E2 1.04E2	+/-15%	3.92E0 2.40E0 2.40E0	+/-233% +/-290% +/-290%
		Standing Water at NE Corner Shuman Bldg.	1 0450	- ·	1.15E0	+/-195%

Radon Flux Measurements Using Accumulator Method

Table 7

Date Ti	lme	Location	Environmental Conditions	Flux
				pCi/sq.m-s
		Base 1 (Area 2, OllJ)	10 degrees C, damp ground, moderate wind	28
		Base 2 (Area 2, L38K)	10 degrees C, damp ground, moderate wind	6.7
		Base 1 (Area 2, OllJ)	15 degrees C, soaked ground, 1 hour after rain	332
		Base 3 (Area 2, M99H)	15 degrees C, soaked ground, I hour after rain	1.7
04/23 08	B:24	Base 1 (Area 2, OllJ)	15 degrees C, damp ground, sunny, last rain approx. 12 hours	
04/23 09	9:12	Base 3 (Area 2, M99H)	15 degrees C, damp ground, sunny, last rain approx. 12 hours	7.9
04/23 10	00:0	Base 2 (Area 2, L38K)	15 degrees C, damp ground, sunny, last rain approx. 12 hours	5.9
04/24 08	8:38	Base 3 (Area 2, M99H)	7 degrees C, damp ground, cloudy, last rain approx. 2 days	2.7
04/24 08	8:40	Base 1 (Area 2, O11J)	7 degrees C, damp ground, cloudy, last rain approx. 2 days	9.8
04/24 09	9:29	Base 2 (Area 2, L38K)	7 degrees C, damp ground, cloudy, last rain approx. 2 days	1.5
04/27 09	9:05	Base 3 (Area 2, M99H)	21 degrees C, hot, ground dry, sunny	2.2
		Base 3 (Area 2, M99H)	18 degrees C, sunny, last rain approx. 12 hours, light breeze	14
04/29 09	9:36	Base 1 (Area 2, OllJ)	18 degrees C, sunny, last rain approx. 12 hours, light breeze	540
04/29 11	1:10	Base 4 (Area 2, i00P)	18 degrees C, sunny, last rain approx. 12 hours, light breeze	63
05/04 10	0:05	Base 1 (Area 2, OllJ)	Cloudy, drizzle, last heavy rain approx. 1 day	43
		Base 1 (Area 2, OllJ)	Cloudy, drizzle, last heavy rain approx. 1 day	33
		Base 1 (Area 2, OllJ)	Cloudy, drizzle, soaked ground, no wind	177
		Base 1 (Area 2, OllJ)	7 degrees C, windy, wet ground, last rain approx. 12 hours	269
05/07 09	9:32	Base 1 (Area 2, OllJ)	10 degrees C, windy, ground dry at surface, sunny	34
		Base 3 (Area 2, M99H)	10 degrees C, windy, ground dry at surface, sunny	1.5
		Base 3 (Area 2, M99H)	15 degrees C, cloudy, moderate wind, ground moist	8.5
		Base 4, (Area 2, 100P)	15 degrees C, cloudy, moderate wind, ground moist	243
		Base 4 (Area 2, 100P)	13 degrees C, light wind, soaked ground, rain appro	ox. 28

Table 7, cont.

Date	Time	Location	Environmental Conditions	Flux
				pCi/sq.m-s
		Base 4 (Area 2, 100P)	15 degrees C, windy, cloudy, last rain approx. 1	day 310
05/12	12:08	Base 1 (Area 2, OllJ)	15 degrees C, windy, cloudy, last rain approx. 1 day	18
05/13	10:10	Base 4 (Area 2, i00P)	l3 degrees C, cloudy, ground moist, last rain approx. 8 hours	206
05/13	10:50	Base 1 (Area 2, OllJ)	13 degrees C, cloudy, ground moist, last rain	30
			approx. 8 hours	30
05/14	10:30	Base 5 (Area 2,)	13 degrees C, cloudy, light wind, drizzle	43
05/14	11:04	Base 6 (Area 1, 100A)	13 degrees C, cloudy, light wind, drizzle	376
05/15	09:51	Base 6 (Area 1, IOOA)	15 degrees C, sunny, light wind	380
		Base 6 (Area 1, 100A)	10 degrees C, cloudy, heavy rain last 2 days,	188
		• •	strong wind	
05/19	09:44	Base 1 (Area 2, OllJ)	10 degrees C, drizzle, ground soaked	8.0
		Base 4 (Area 2, 100P)	10 degrees C, drizzle, ground soaked	17
		Base 6 (Area 1, IOOA)	10 degrees C, drizzle, ground soaked	538
		Base 1 (Area 2, OllJ)	18 degrees C, no wind, sunny, ground damp	276
		Base 4 (Area 2, 100P)	18 degrees C, no wind, sunny ground damp	119
		Base 6 (Area 1, 100A)	18 degrees C, no wind, sunny ground damp	353
		Base 1 (Area 2, OllJ)	21 degrees C, sunny, no wind, dry soil	212
		Base 4 (Area 2, 100P)	21 degrees C, suny, no wind, dry soil	406
		Base 6 (Area 1, IOOA)	21 degrees C, sunny, light breeze, dry soil	350
		Base 1 (Area 2, OllJ)	21 degrees C, sunny, light breeze, dry soil	596
		Base 4 (Area 2, 100P)	21 degrees C, sunnny, light breze, dry soil	865
		Base 4 (Area 2, 100P)	28 degrees C, dry soil, last rain 2 days 29.90" h	
		Base 4 (Area 2, 100P)	28 degrees C, dry soil, last rain 2 days 29,90° h	
		Area 2, kOOR	29 degrees C, damp soil, light wind	1.8
		Base 6 (Area 1, 100A)	30 degrees C, dry soil, 29.90" hg	620
		Base 4 (Area 2, 100P)	32 degrees C, slight wind, dry soil 29.85 hg	580
		Base 1 (Area 2, OllJ)	34 degrees C, light wind, dry soil	388
		Area 2, IOOF	39 degrees C, no wind, damp soil	0.6
		Base 4 (Area 2, 100P)	33 degrees C, dry soil, moderate breeze	245
		Base 4 (Area 2, 100P)	33 degrees C, dry soil, slight breeze	579
		Base 8 (Area 1, 1001)	33 degrees C, dry soil, strong wind	3.0
		Area 2, M62J	21 degrees C, dry soil, no wind 29.92"	1.3
		Area 2, UOOP	18 degrees C, dry soil, light breeze	38
-		•		

Table 7, cont.

Date	Time	Location	Environmental Conditions	Flux
				pCi/sq.m-2
		Area 2, T00P	18 degrees C, dry soil, light breeze 18 degrees C, dry soil, light breeze 18 degrees C, dry soil, light breeze	85
		Area 2, h00X	18 degrees C, dry soil, light breeze	1.8
		Area 2, j00W	18 degrees C, dry soil, light breeze 26 degrees C, damp soil, light breeze 29.98" hg	1.9
•		Area 2, UOOP	26 degrees C, damp soil, light breeze 29.98" hg	14
-		Area 2, T00P	26 degrees C, damp soil, light breeze 29.98" hg 26 degrees C, damp soil, light breeze 29.98" hg 26 degrees C, damp soil, light breeze 29.98" hg	35
		Area 2, h00x	26 degrees C, damp soil, light breeze 29,98" hg	0.6
		Area 2, j00W	26 degrees C, damp soil, light breeze 29.98" hg	1.0
		Area 4, 100L	29 degrees C, dry soll, qusty, /60.5mm hg	0.8
		Area 2, JOOL	29 degrees C, dry soil, gusty, 760.5mm hg 27 degrees C, damp soil, no wind 30.14 hg	0.7
		Earth City, offsite bkg	27 degrees C, damp soil, no wind 30.14 hg	0.5
		Taussig Rd, offsite bkg	27 degrees C, damp soil, no wind 30.14 hg	1.5
		Area 2m UOOP	n/a	16
		Base 4 (Area 2, 100P)	Damp soil, slight breeze	138
		Taussig Rd, offsite bkg	Damp soil, slight breeze	0.3
		Area 2, J30L	31 degrees C, dry soil, slight breeze, 30.20" hg	0.4
		Area 2, H040	31 degrees C, dry soil, slight brze, 30.20" hg	0.4
		Taussig Rd, offsite bkg	Damp soil, started to rain during accumulation	0.3
		Old St. Charles Rock Rd Bkg		1.0
		Area 1, M10G	26 degrees C, damp soil, 29.96" hg	22
		Area 1, M10G	25 degrees C, dry soil, no wind, 30.02" hg	14
		Base 6 (Area 1, 100A)	30 degrees C, damp soil, mild wind, 29.86" hg	59
		Old St. Charles Rock Rd Bkg		<0.1
07/24	08:14	Area 1, M10G	24 degrees C, damp soil, light wind, 30.06" hg	15
07/24	08:31	Area 2, p07S Area 2, p07S Area 1, M10G	24 degrees C, damp soil, light wind, 30.05" hg	168
07/28	09:05	Area 2, p07S	23 degrees C, damp soil, mild wind, 30.06" hg	34
07/28	09:23	Area 1, MlOG	23 degrees C, damp soil, mild wind, 30.06" hg	61
0//29	08:09	page o (Vieg I' Inni)	18 degrees C, damp soil, light wind, 30.21" hg	0.5
		Area 2, p07S	18 degrees C, damp soil, light wind, 30.21" hg	173
		Old St. Charles Rock Rd Bkg		0.3
		Taussig Road offsite bkg	21 degrees C, damp soil, light wind, 30.21" hg	0.2
07/30	08:09	Area 2, p07S	23 degrees C, dry soil, sunny, light wind, 30.21" !	
07/30	08:16	Area 1, 000M	23 degrees C, dry soil, sunny, light wind, 30.21" I	hg 3.2
07/30	09:20	Old St. Charles Rock Rd Bkg	23 degrees C, dry soil, sunny, light wind, 30.21 h	
		Area 1, 000M	24 degrees C, very dry soil, sunny, light wind,	2.0
			30.25" hg	

Date Time	Location	Environmental Conditions	Flux
07/31 10:13	Area 1, EOOF	24 degrees C, very dry soil, sunny, light wind,	pCi/sq.m-2 0.5
08/03 10:14 08/04 09:05 08/04 09:11 08/05 09:21 08/05 09:25 08/06 08:35 08/06 08:40 08/07 09:08	Area 1, E00F Area 1, 000M Area 1, E00F Area 1, 000M Area 1, E00F Area 1, 000M Area 1, E00F Area 1, M10G Area 2, p07S Base 8 (Area 1, 1001)	30.25" hg 25 degrees C, dry soil, light wind, 29.94" hg 25 degrees C, dry soil, light wind, 29.94" hg 29 degrees C, dry soil, light wind, 30.04" hg 29 degrees C, dry soil, light wind, 30.04" hg 28 degrees C, dry soil, light wind, 30.07" hg 28 degrees C, dry soil, light wind, 30.07" hg 27 degrees C, dry soil, light wind, 30.01" hg 27 degrees C, dry soil, light wind, 30.01" hg 27 degrees C, dry soil, light wind, 30.01" hg 27 degrees C, dry soil, light wind, 30.01" hg	3.4 0.4 6.4 0.5 9.6 9.6 0.4 5.1 122 0.4
08/17 10:05 08/17 10:10 08/18 09:14 08/18 09:17 08/19 09:34	Area 2, 100F . Area 2, 100L Area 2, 100L Area 2, 100F Area 2, 100L Area 2, 100F	20 degrees C, dry soil, light wind, 30.08" hg 20 degrees C, dry soil, light wind, 30.08" hg 18 degrees C, dry soil, no wind, 30.11" hg 18 degrees C, dry soil, no wind, 30.11" hg 18 degrees C, dry soil, no wind, 30.11" hg 18 degrees C, dry soil, no wind, 30.11" hg	0.6 0.3 <0.1 0.5 0.3

Radon Flux Measurements Using the Charcoal Canister Method

Table 8

Date	•	mpling me(sec) Enviromental Cond	itions	Flux
			p	C1/sq.m-s
06/02	Base 6 (Area 1, 100a)	6,000 30 degrees C, dry soil,	29.90" hg	362
06/03	Base 4 (Area 2, 100P)	4,980 32 degrees C, dry soil,	light wind, 29.85 hg	29
		1,200 32 degrees C, dry soil,		
06/04	Base 1 (Area 1, 011J)	7,200 34 degrees C, dry soil	light wind	147
06/10	Base 8 (Area 2, 1001)	55,320 21 degrees C, dry soil, 18,000 21 degrees C, dry soil, 60,300 18 degrees C, dry soil, 22,500 18 degrees C, dry soil, 54,900 n/a 17,640 26 degrees C, damp soil	no wind, 29.92" hg	2.0
06/10	Area 2, MOOI	18,000 21 degrees C, dry soil,	no wind, 29.92" hg	2.3
06/11	Area 2, LOOG	60,300 18 degrees C, dry soil,	light breeze	163
06/11	Area 2, 000P	22,500 18 degrees C, dry soil,	light breeze	. 44
06/18	Area 2, 100S	54,900 n/a		2.2
06/12	Area 2, TOOP	17,640 26 degrees C, damp soil 21,600 27 degrees C, damp soil	, light breeze, 29.98" hg	
06/23	Earth City, offsite bkg	21,600 27 degrees C, damp soil	, no wind, 30.14" hg	0.9
06/24	Taussig Road, offsite DKg	61,200 n/a		0.8
	Area 2, p00J	55,320 n/a		8.7
06/30	Area 2, U00P	20,940 n/a		74
07/01	Old St. Charles Rd, bkg	20,040 n/a		0.8
07/06	Area 2, 100P	20,340 n/a 20,040 n/a 50,400 Damp soil, light breeze 14,100 31 degrees C, dry soil, 50,140 31 degrees C, dry soil, 22,540 Damp soil, during rain	-1: 14 bureau 20 000 be	178
07/08	Area I, H25N	14,100 31 degrees C, dry soil,	slight breeze, 30.20 ng	0.9
07/08	Area 2, J30L	50,140 31 degrees C, dry soil,	slight breeze, 30.20" ng	0.3
07/10	Area 1, 100L	22,540 pamp soll, during rain		0.6 1.6
07/15	Old St. Charles Rock Rd, bk	54,540 n/a	20 0CH b-	24
07/16	Area 1, MIUG	22.380 26 degrees C, damp soil	, 29.96" ng	14
07/17	Area 1, MIUG	57,240 25 degrees C, dry soil,	no wind, 30.20" ng	13
07/20	Base 6 (Area 1, IUUA)	5,880 30 degrees C, damp soil	, mild wind, 29.80° ng	0.3
07/22	Old St. Charles Rock Rd, DK	68,640 26 degrees C, damp soil	, no wind, suitu" ng	0.3 4.5
07/23	Area 1, MIUG	60,960 N/a 63,560 83 3 0	20 0C# ha	4.J
07/28	Area 1, M10G	61,560 23 degrees C, damp soil	, 30.06" ng	2.1
07/28	Area 2, pu4S	63,240 23 degrees C, damp soll	, 30.00° ng	0.4
07/29	Area 1, 1001, Base 6	57,540 18 degrees C, damp soil	, light wind, 30.21 ng	1 2
0//29	Area 1, OUUI	68,640 26 degrees C, damp soil 60,960 n/a 61,560 23 degrees C, damp soil 63,240 23 degrees C, damp soil 57,540 18 degrees C, damp soil 57,960 18 degrees C, damp soil 55,080 23 degrees C, dry soil, 56,820 23 degrees C, dry soil, 56,340 24 degrees C, very dry 56,220 24 degrees C, very dry 52,800 28 degrees C, dry soil,	, light wind, 30.21 ng	7.3
07/30	Area 2, pu45	ob, USU 23 degrees C, dry soil,	light wind, 30.21" hg	212
07/30	Area 1, COUM	so, ozu zs degrees c, dry soll,	TIANT ATUR' 20°57 UG	, n A
07/31	Area I, EUUF	50,340 24 degrees C, very dry	ecil light wind, 30.25" ha	5.2
07/31	Area I, Coum	50,220 24 degrees C, very dry	auss, signe wind, so.25 ng Tiabe wind. 30 07* ha	0.6
UB/U 5	ALGO I' RAAL	25,000 to dedices c' did poil'	right wind some nd	V. U

9

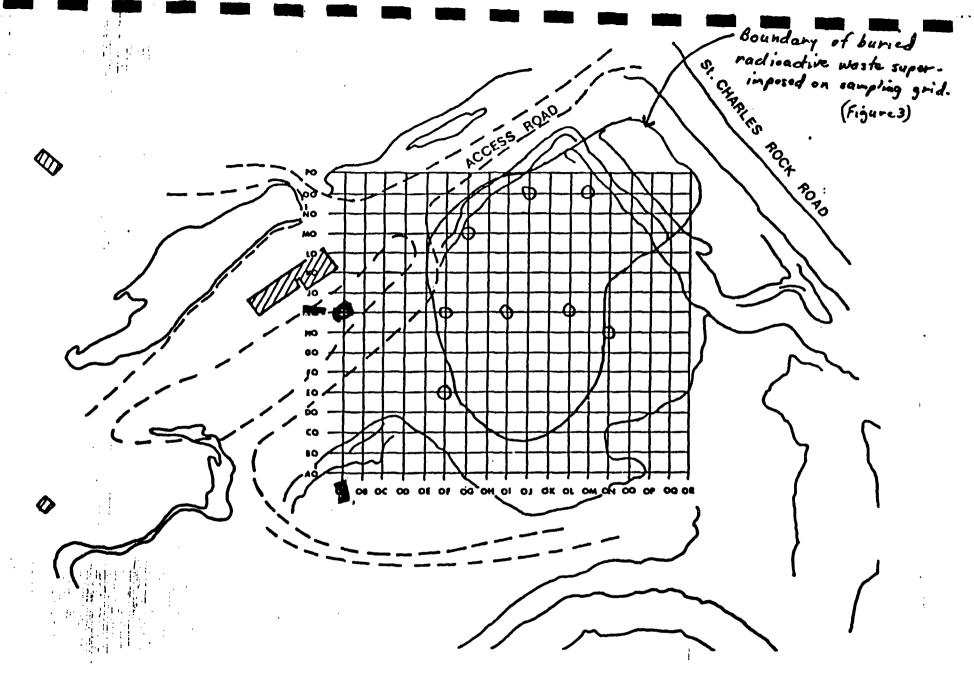


Figure 5. Grid locations for radiological survey, Area 1.

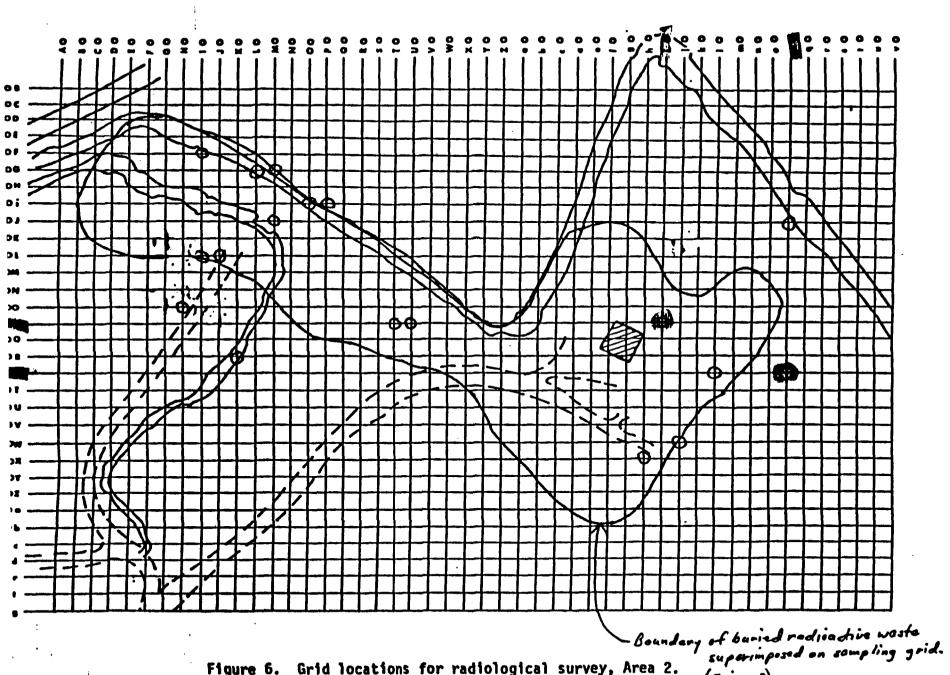


Figure 6. Grid locations for radiological survey, Area 2.

Side-By-Side Radon Flux Measurements, Accumulator versus Charcoal Canister Methods

Table 9

Location	Date	Charcoal Canister	Accumulator
		pCi/sq.m-2	pCi/sq.m-2
Base 6	6-2	400	740
Base 4	6-3	680	790
Base l	6-4	170	370
Base 8	6-9	2.1	3.0
Base 3	6-10	2.4	1.3
Borehole 3	6-11	50	38
TOOP(Area 2)	6-12	30	35
Earth City	6-23	0.9	<1
Taussig Road	6-24	0.8	1.5
Base 4	7-6	180	140
Borehole 2	7-8	<0.5	<1
MlOG(Area l)	7-16	22.2	22.3
MlOG(Area l)	7-17	13.4	14.0
Base 6	7-20	14.1	59.2
Old St. Charles Rd	7-22	0.3	<1
MlOG(Area l)	7-24	4.6	15.3
MlOG(Area l)	7-28	9.8	60.5
20' W of Borehole #20	7-28	36.4	34.3
Base 8	7-29	0.5	0.5
20' W of Borehole #20	7-30	218	38
000M(Area 1)	7-30	2.9	3
000M(Area 1)	7-31	5.8	0.2

Working Level (WL) and Long-Lived Gross Alpha Activity on High Volume Air Samples

Table 10

Sample Duration: 10 min. Flow Rate: 570 1/min. Total Volume: 1.4E6 ml

Date/Time	Location	7 Day Activity	WL
8105010805	Outside Trailer	uCi/cc 2.03E-13+/-122%	.0016
8105010819	Outside Trailer	2.66E-13+/-103%	.0015
8105010918	Base 3	0+/-211%	.0010
8105010931	Base 1	3.13E-13+/-93%	.0008
8105040942	Outside Trailer	4.69E-14+/-365%	.0010
8105041013	Base 1	1.09E-13+/-188%	.0009
8105041124	COOG	4.69E-14+/-365%	.0012
8105041150	Base 4	2.66E-13+/-103%	.0012
8105111034	Earth City Background	4.69E-14+/-365%	.0003
8105121046	Earth City Background	4.69E-14+/-365%	.0004
8105121402	Outside Trailer	0+/-211%	.0002
8105121447	Base 4	4.22E-13+/-78%	.0006
8105121504	Outside W-L Office Bldg	7.34E-13+/-57%	.0003
8105121528	Base 1	1.56E-13+/-145%	.0002
8105121551	TOOP	4.69E-14+/-365%	.0003
8105131154	200N	4.69E-14+/-365%	.0010
8105151010	Base 6	2.03E-13+/-1228	.0003
8105151035	Base 7	1.09E-13+/-188%	.0002
8105181022	Base 6	2.03E-13+/-122%	.0003
8105201107	Base 4	2.66E-13+/-103%	.0004
8105201137	Base 6	2.66E-13+/-103%	.0004
8105270821	Inside Trailer	1.41E-12+/-40%	.0110
8105271040	Base 6	7.81E-13+/-55%	.0002
8106021429	000J	2.03E-13+/-122%	.0007
8106021450	h000	4.69E-14+/-365%	.0007
8106080957	Drilling Borehole #1	1.56E-13+/-146%	.0006
8106081335	Drilling Borehole #2	4.69E-14+/-365%	.0005
8106091015	Drilling Borehole #3	7.34E-13+/-57%	.0009
8106091318	Drilling Borehole #4	1.15E-11+/-14%	.0020
8106091350	Drilling Borehole #4	8.55E-12+/-16%	.0027

Table 10, cont.

Date/Time	Location	7 Day Activity	WL
		uCi/cc	
8106100945	Drilling Borehole #5	2.66E-13+/-103	.0012
8106101231	Drilling Borehole #7	4.22E-13+/-78%	.0015
8106101411	Drilling Borehole #8	4.22E-13+/-78%	.0012
8106231028	Earth City Background	1.09E-13+/-188	% .0005
8106231146	Inside Shuman	1.98E-12+/-33%	.0011
8106231407	Taussig Rd Background	4.69E-14+/-365	% . 0005
8106300931	Borehole #32	4.69E-14+/-365	.0006
8107070919	Old St. Charles Rd Bkg	0+/-211%	.0017
8011130845	Area 1, Near Road		.017
8011131030	Area l Highest Ext. Level		.014
8011131445	Area 2 Highest Ext. Level		.019
8011131507	Area 2 Suspected Surface Mat.		.038
8011140735	Inside Shuman Building		.031
		Isotopic Ac	tivities
Date/Time	Location	U-238	Ra-226
Composite Sample	All Onsite Samples	9.1E-14+/-1%	4.3E-14+/-1%

Note: Individual sample sensitivities are low due to short sampling time. However, all gross alpha activities except two are less than the maximum permissible concentrations (MPCs) for U-238 or Ra-226, for unrestricted areas, as listed in Appendix B, Table II, of 10CFR20. (These MPCs are 3.0E-12 uCi/cc for either nuclide.) The two exceptions occurred when drilling through contaminated materials.

Gamma Analysis of High Volume Air Samples for Rn-219 Daughters (Pb-211)

Table 11

Date	Time	Location	405 KeV (3.4% ab)	427 KeV (1.8% ab)	/cc) at 832 KeV (3.4% ab)	Average uCi/cc
6/3	14:21	Base 4 (Area 2, i00P)	2.3E-10	*****	2.5E-10	2.4E-10
6/4	8:31	Base 1 (Area 2, 000J)	5.7E-11			5.7E-11
6/4	12:30	Base 4	1.0E-9	8.9E-10	9.3E-10	9.5E-10
6/18	14:00	Base 4	5.6E-10	4.8E-10	4.6E-10	5.0E-10
6/29	12:23	Base 6 (Area 1, NOOA)	9.0E-11		1.3E-10	1.1E-10

Table 12: Priority Pollutant Analyses of Auger Hole and Leachate Sludge Samples

Results of Chemical Analyses of West Lake Landfill 7 July 1981

Parameter	Units	WIP.	BH-2	BH-13	EH-25	BH-31 *	BH-35 *
Antimony	mg/kg	0.077	0,268	0.325	0.355	0.218	21.0
Arsenic	mg/kg	0.62	6.0	7.0	2.0	4.0	1.0
Beryllium	mg/kg	0.038	0.12	0.24	0.18	0.20	0.14
Cadmium	mg/kg	0.052	2.2	2.3	2.27	4.0	37.5
Chronium	mg∕kg	1.41	40.9	34	7.0	26.2	215
Copper	mg/kg	0.459	1039	88	23.2	131.6	356
Cyanide	mg∕kg	0.10	0.028	0.12	1.61	0.376	0.97
Lead	mg∕kg	19.7	356	431	49.0	251.6	1490
Mercury	mg∕kg	5	0.22	0.36	0.14	0.10	0.84
Nickel	mg∕kg	3.00	20.0	45.1	11.3	4	218.0
Selenium	mg∕kg	0.12	1.6	1.2	1.2	1.2	0.9
Silver	mg∕kg	0.134	0.580	0.369	0.165	0.264	0.409
Thallium	mg∕kg	14.0	10.0	2.0	<0.1	0.6	3.5
Zinc	mg/kg	41.4	246	270	180	89	2395

WTP - Waste treatment plant leachate sludge

BH-2 - Auger hole 2, Area 2

BH-13 - Auger hole 13, Area 2 BH-25 - Auger hole 25, Area 1

BH-31 - Auger hole 31, Area 2

BH-35 - Auger hole 35, Area 2

CLIENT Wes	t Lake			
CLIENT I.D.	W.T.P.	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D	#569		DATE ANALYSIS COMPLETE	D 16 July 1981

ACID COMPOUNDS

	<u> pq/l</u>
2,4,6-trichlorophenol	ND
o-chloro-m-cresol	ND
2-chlorophenol	
2,4-dichlorophenol	ND
2,4-dimethylphenol	Q_
2-nitrophenol	ND .
4-nitrophenol	+
2,4-dinitrophenol	*
4,6-dinitro-o-cresol	ND
pentachlorophenol	ND
phenol	8.1

ND - Less than 1 µg/l

- Less than 25 µg/l

- Less than 250 µg/l

CLIENT West Lak	:e	_
CLIENT I.D. W.T	r.P. (NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RMC I.D.	#569	DATA ANALYSIS COMPLETED 22 July 1981

BASE/NEUTRAL COMPOUNDS

	<u>pq/l</u>		ħ ∂ √ 7
acenaphthene	ND	nitrobenzene	NO
benzidine —	**	N-nitrosodimethylamine	**
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylamine	••
hexachlorobenzene		N-nitrosodi-n-propylamine	**
hexachloroethane	ND	bis(2-ethylhexyl)phthalate	•
bis(2-chloroethyl)ether	ND	butyl benzyl phthalate	ND
2-chloronaphthalene	ND	di-n-butyl phthalate	ND
1,2-dichlorobenzene	1/20	di-n-cctyl phthalate	ND
1,3-dichlorobenzene	ND	diethyl phthalate	ND
1,4-dichlorobenzene	ND	dimethyl phthalate	ND
3,3'-dichlorobenzidine	*	benzo (a) anthracene	ND
2,4-dinitrotoluene	**	benzo(a)pyrene —	ND
2,6-dinitrotoluene	*	benzo(b) fluoranthene	ND
1,2-diphenylhydrazine	ND	benzo(k) fluoranthene	ND
fluoranthene	ND	chrysene	ND
4-chlorophenyl phenyl ether	ND	acenaphthylene	ND
4-bromophenyl phenyl ether	ND_	anthracene	ND
bis(2-chloroisopropyl)ether	*	benzo (g.h.i.) perylene	
bis(2-chloroethoxy)methane	ND	fluorene	ND
hexachlorobutadiene	ND	phenanthrene	ND
hexachlorocyclopentadiene	*	dibenzo (a,h)anthracene	
isophorone	ND	indeno(1,2,3-c,d)pyrene	ND
naphthalene'	NID	pyrene	ND_
bis (chloromethyl) ether =	**	2,3,7,8-tetrachlorodibenzo-	-
-		p-dioxin	**

ND - Less than 1 µg/l

^{* -} Less than 10 µg/1

^{** -} Less than 25 µg/l

Benzo(b) fluoranthene and benzo(k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

CLIENT West	Lake			
CLIENT 1.D	W.T.P.	(NPDES)	DATE SAMPLE RECEIVED 6 JUL	y 1981.
RMC I.D.	#569		DATE ANALYSIS COMPLETED 24	July 1981
		. <u>\$</u>	esticides	•
		hd\J		<u>pg/1</u>
aldrin		ND	a-BHC	ND
dieldrin		ND	b-BHC	ND
chlordane	_	ND	d-BHC	*
4,4'-DOT	_	ND	g-BHC	ND
4,4'-DOE		ND	PCB - 1242	ND
4,4'-DDD		ND	PCB - 1254	<u> </u>
endosulfan I		*	PCB - 1221	ND
endosulfan II			PCB - 1232	ND
endosulfan sul	fate	*	PCB - 1248	ND
endrin	_	*	PCB - 1260	ND
endrin aldehyd	le _	+	PCB - 1016	ND
heptachlor	-	ND	toxaphene	ND

ND - Less than 1 µg/l + - Less than 10 µg/l

heptachlor epoxide

CLIENT We	st Lake			
CLIENT I.D.	W.T.P.	(NPDES)	DATE SAMPLE RECEIVED_	6 July 1981
RMC I.D	#569		DATE ANALYSIS COMPLETE	5 August 1981

VOLATILES

	<u> 1971</u>		ħd\J
acrolein	**	1,2-dichloropropane	ND
acrylonitrile	**	1,3-dichloropropylene ¹	*
benzene	2.0	ethylbenzene	ND
carbon tetrachloride	*	methylene chloride	15.6
chlorobenzene	XD	methyl chloride	*
1,2-dichloroethane	ND	methyl bromide	*
1,1,1-trichloroethane	ND_	bromoform	ND
1,1-dichloroethane	ND	dichlorobromomethane	ND
1,1,2-trichloroethane	ND	trichlorofluoromethane	2.3
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	*
chloroethane	*	chlorodibromomethane	ND
2-chlorouthylvinyl ether	*	tetrachloroethylene	ND
chloroform	4.3	tolmene	1.8
1,1-dichloroethylene	ND	trichloroethylene	ND
1,2-trans-dichloroethylene	*	vinyl chloride	*

ND - Less than 1 µg/l

^{* -} Less than 10 µg/l ** - Less than 100 µg/l

^{14.3-}cis-dichloropropylene and 1.3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

CLILMI Wes	t Lake			
CLIENT I.D.	BH-2	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RHC I.D.	#570	,	DATE ANALYSIS COMPLETE	D 16 July 1981

ACID COMPOUNDS

	<u>pq/1</u>
2,4,6-trichlorophenol	ND
o-chloro-m-cresol	ND
2-chlorophenol	ND
2,4-dichlorophenol	ND CG/s
2,4-dimethylphenol	ND
2-nitrophenol	ND ON
4-nitrophenol	*
2,4-dinitrophenol	*
4,6-dinitro-o-cresol	
pentachlorophenol	1.D
phenol	7.8

ND - Less than 1 µg/l • - Less than 25 µg/l •• - Less than 250 µg/l

CI.IINT West Lake	······································	
CLIENT I.D. BH-2	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RMC I.D. MS	70	DATA ANALYSIS COMPLETED 22 July 1981
	BASE/NE	EUTRAL COMPOUNDS
	<u> 49/1</u>	
acenapht hene	ND	nitrobenzene
benzidine	**	N-nitrosodimethylamine
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylamine
hexachlorobonzene	ND	N-nitrosodi-n-propylamine
hexachloroethane	ND	bis(2-ethylhexyl)phthalate
bis(2-chloroethyl)ether	ND	butyl benzyl phthalate
2-chloronaphthalene	ND	di-n-butyl phthalate
1,2-dichlorobenzene	ND	di-n-octyl phthalate
1,3-dichlorobenzene	ND	diethyl phthalate
1,4-dichlorobenzene	<u> </u>	dimethyl phthalate
3,3'-dichlorobenzidine	*	benzo(a) anthracene
2,4-dinitrotoluene	**	benzo(a) pyrene
2,6-dinitrotoluene	ND	benzo(b) fluoranthene
1,2-diphenylhydrazine	ND_	benzo(k) fluoranthene
fluoranthene	ND	Chrysene
4-chlorophenyl phenyl ethe	r ND	acenaphthylene
4-bramophonyl phenyl ether	ND_	anthracene
bis (2-chloroisopropyl) ethe	r ND	benzo (g.h.i.) perylene
bis(2-chloroethoxy)methane	ND	fluorene
hexachlorobutadiene	NTO	thenanthrene

NO - Less than 1 µg/l + - Less than 10 µg/l

bis (chloramethyl) ether

hexachlorocyclopentadiene

isophorone

naphthalene!

*

ND

ND

dibenzo (a,h) anthracene

indeno(1,2,3-c,d)pyrene

2,3,7,8-tetrachlorodibenzo-

pyrene

p-dioxin

^{** -} less than 25 µg/l

lenzo(b) fluoranthene and benzo(k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

CLIENT West	Lake			
CLIENT 1.D.	BH-2	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D	#570	·	DATE ANALYSIS COMPLETED_	24 July 1981
			PESTICIDES	
		<u>44/1</u>		<u> pg/l</u>
aldrin		*	a-BHC	*
dieldrin		ND	b-BHC	ND
chlordane		ND	d-BHC	*

g-BHC ND ND 4,4'-DDT PCB - 1242 100 ND 4,4'-DOE ND PCB - 1254 4,4'-DDD ND endosulfan I * PCB - 1221 Ø endosulfan II **,*** PCB - 1232 ND endosulfan sulfate * PCB - 1248 ND endrin * PCB - 1260 S PCB - 1016 endrin aldehyde ND

toxaphene

ND

ND

ND - Less than 1 µg/l • - Less than 10 µg/l

heptachlor

heptachlor epoxide

CLIENT West Lake		_	
CLIENT I.D. BH-2	NPDES)	DATE SAMPLE RECEIVED 6 July 1981	
RMC I.D. #570		DATE ANALYSIS COMPLETED 5 August 1981	
	3	VOLATILES	
	<u> 19/1</u>		<u>1/94</u>
acrolein	**	1,2-dichloropropane	ND
acrylonitrile	**	1,3-dichloropropylene ¹	*:
benzene	1.4	ethylbenzene	1.2
carbon tetrachloride		methylene chloride	21.4
chlorobenzene	1.9	methyl chloride	•
1,2-dichlorouthane	7.1	methyl bromide	13.1
1,1,1-trichloroethane	ND	bromoform	ON
1,1-dichloroethane	ND	dichlorobromomethane	ND
1,1,2-trichloroethane	ND	trichlorofluoromethane	2.4
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	*
chloroethane	*	chlorodibromomethane	МĐ
2-chlorouthylvinyl ether	ND	tetrachloroethylene	1.7

toluene

trichloroethylene

vinyl chloride

7.3

1.7

ND - Less than 1 µg/kg
+ - Less than 10 µg/kg

1.1-dichlorouthylene

1,2-trans-dichloroethylune

chloroform

6.2

ND

^{** -} Less than 100 µg/kg

^{11,3-}cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, Values reported indicate the sum of both compounds.

CLIENT Wes	t Lake			
CLIENT I.D.	BH-13	(NPDES)	DATE SAMPLE RECEIVED_	6 July 1981
RHC I.D.	W571		DATE AVALYSIS COMPLETE	

ACID COMPOUNDS

	' <u>vq/1</u>
2,4,6-trichlorophenol	ND
o-chloro-m-cresol	ND
2-chlorophenol	ND
2,4-dichlorophenol	ND
2,4-dimethylphenol	
2-nitrophenol	
4-nitrophenol	*
2,4-dinitrophenol	ND
4,6-dinitro-o-cresol	ND
pentachlorophenol	ND
phenol	2.6

ND - Less than 1 µg/l • - Less than 25 µg/l •• - Less than 250 µg/l

CLIINI We	est Lake		-	
כו.וואר ו.ם	BH-13	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D.	#571		DATA ANALYSIS COMPLETED	22 July 1981

BASE/NEUTRAL COMPOUNDS

	<u> </u>		<u> 1/94</u>
acenaphthene	ND	nitrobenzene	ND
benzidine	**	N-nitrosodimethylamine	**
1,2,4-trichlorobenzene		N-nitrosodiphenylamine	**
hexachlorobenzene	ND	N-nitrosodi-n-propylamine	**
hexadiloroethane	*	bis(2-ethylhexyl)phthalate	10.1
bis(2-chloroethyl)ether	*	butyl benzyl phthalate	*
2-chloronaphthalene	ND	di-n-butyl phthalate	ND
1,2-dichlorobenzene	ND	di-n-octyl phthalate	ND
1,3-dichlorobenzene	ND	diethyl phthalate	ND
1,4-dichlorobenzene	ND	dimethyl phthalate	ND
3,3'-dichlorobenzidine	•	benzo (a) anthracene	ND
2,4-dinitrotoluene	**	benzo (a) pyrene	*
2,6-dinitrotoluene	*	benzo(b) fluoranthene	*
1,2-diphenylhydrazine	+	benzo(k)fluoranthene	*
fluoranthene	ND	chrysene	*
4-chlorophenyl phenyl ether	•	acenaphthylene	ND
4-bramophenyl phenyl ether	*	anthracene	ND
bis(2-chloroisopropyl)ether	*	benzo (g.h.i.) perylene	**
bis(2-chloroethoxy)methane	•	fluorene	NED
hexachlorobutadiene	*	phenanthrene	.ND
hexachlorocyclopentadiene	•	dibenzo (a,h)anthracene	**
isophorone	+	indeno(1,2,3-c,d)pyrene	*
naj hthallene!	NE	pyrene	ND
bis (dilorquethyl) ether	**	2,3,7,8-tetrachlorodibenzo-	
-		p-dioxin	**
•		£	

ND - Less than $1 \mu g/1$

^{* -} less than 10 µg/1

^{** -} Less than 25 µg/l

Henzo(b) fluoranthene and benzo(k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

CLIENT West La	ke		····	
CLIENT I.D	BH-13	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RC I.D.	#571	· ·	DATE AVALYSIS COMPLETE	D 24 July 1981
		<u> P</u>	STICIDS	
		<u>pq/1</u>		<u> 1/94</u>
aldrin		+	a-BHC	•
dieldrin		*	b-BHC	+
chlordane	-	ND	d-BHC	•
4,4'-DDT		*	g-BHC	*
4,4'-DOE		*	PCB - 1242	ND
4,4'-DDD	-	+	PCB - 1254	ND
endosulfan I		+	PCB - 1221	ND
endosulfan II		+	PCB - 1232	ND
endosulfan sulfat	:e	+	PCB - 1248	ND
endrin		+	PCB - 1260	ND
endrin aldehyde	-	+	PCB - 1016	ND
heptachlor		_*	toxaphene	ND

ND - Less than 1 μ g/l + - Less than 10 μ g/l

heptachlor epoxide

CLIENT West	Lake		_
CLIENT I.D	BH-13	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RMC I.D.	#571		DATE ANALYSIS COMPLETED 5 AUGUST 1981

VOLATILES

	<u>pg/1</u>		<u> 1/94</u>
acrolein	**	1,2-dichloropropane	ND
acrylonitrile	**	1,3-dichloropropylene ¹	—
benzene	ND.	ethylbenzene	4.4
carbon tetrachloride	•	methylene chloride	ND
chlorobenzene	ND_	methyl chloride	+
1,2-dichlorcethane	ND	methyl bromide	*
1,1,1-trichloroethane	ND	bromoform	ND
1,1-dichlorcethane	ND	dichlorobromomethane	ND
1,1,2-trichloroethane	ON	trichlorofluoromethane	33.8
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	*
chloroethane	*	chlorodibromomethane	<u>ND</u>
2-chlorouthylvinyl ether	ND	tetrachloroethylene	4.6
chlorofonu	7.8	toluene	ND
1,1-dichloroethylene	CJN	trichlorcethylene	1.8
1.2-trans-dichloroethylene		vinyl chloride	

ND - Less than 1 µg/kg * - Less than 10 µg/kg
** - Less than 100 µg/kg

^{11,3-}cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

CLIDNT !les	t Lake			
CLIENT I.D.	BH-25	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981.
RMC I.D.	#572	·	DATE ANALYSIS COMPLETED	16 July 1981

ACID COMPOUNDS

	<u> pq/1</u>
2,4,6-trichlorophenol	ND
o-chloro-m-cresol	ND
2-chlorophenol	ND
2,4-dichlorophenol	ND
2,4-dimethylphenol	ND
2-nitrophenol	ND
4-nitrophenol	*
2,4-dinitrophenol	**
4,6-dinitro-o-cresol	*
pentachlorophenol	ND
phenol	52.8

ND - Less than 1 µg/l • - Less than 25 µg/l •• - Less than 250 µg/l

CLIENT W	est Lake	·		
CLIENT I.D.	BH-25	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D.	#572		DATA ANALYSIS COMPLETE	D 三 July 1981

BASE/NEUTRAL COMPOUNDS

	10/1		ha\J
acenaphthene	ND	nitrobenzene	
Denzidine	**	N-nitrosodimethylamine	**
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylamine	**
hexachloroxenzene	ND	N-nitrosodi-n-propylatine	**
hexachloroethane	*	bis(2-ethylhexyl)phthalate	3.5
bis(2-chloroethyl)ether	*	butyl benzyl phthalate	•
2-chloronaphthalene	ND	di-n-butyl phthalate	ND
1,2-dichlorobenzene	ND	di-n-octyl phthalate	190
1,3-dichlorobenzene		diethyl phthalate	ND
1,4-dichlorobenzene	ND	dimethyl phthalate	כא
3,3'-dichlorobenzidine	*	benzo (a) anthracene	ND
2,4-dinitrotoluene	**	benzo(a) pyrene	•
2,6-dinitrotoluene	*	benzo(b) fluoranthene	•
1,2-diphenylhydrazine	ND	benzo(k)fluoranthene ¹	*
fluoranthene	ND	chrysene	ND
4-chlorophenyl phenyl ether	*	acenaphthylene	ND
4-bromophenyl phenyl ether	+	anthracene	ND
bis(2-chloroisopropy1)ether	*	benzo (g.h.i.) perylene	
bis(2-chloroethoxy)methane	*	fluorene	ND
hexachlorobutadiene	*	phenanthrene	ND_
hexachlorocyclopentadiene	*	dibenzo (a,h)anthracene	**
isophorone	+	indeno(1,2,3-c,d)pyrene	*
naphthalone*	ND	pyrene	ND
bis(chloramethyl)ether	**	2,3,7,8-tetrachlorodibe-20-	
:	•	p-dioxin	**

ND - Less than 1 µg/1

Benzo(b) fluoranthene and benzo(k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

^{• -} Less than 10 µg/1

^{** -} Less than 25 µg/1

CLIENT I.D.	BH-25	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D.	#572		DATE ANALYSIS COMPLETED	24 July 1981
			PESTICIDES	
•		ñd √ I		<u>na/J</u>
aldrin		*	a-BHC	
dieldrin		ND	b -BH C	ND
chlordane		ND	d-BHC	*
4,4'-DDT		ND	g -BHC	ND
4,4'-DDE		ND	PCB - 1242	ND
4,4'-DDD		ND	PCB - 1254	ND_
endosulfan I		*	PCB - 1221	N_D
endosulfan II		*	PCB - 1232	ND
endosulfan suli	fate	*	PCB - 1248	ND
endrin		•	PCB - 1260	
endrin aldehyde	2	*	PCB - 1016	ND
heptachlor		ND	toxaphene	ND
heptachlor epo	kide	*	_	

ND - Less than 1 µg/l * - Less than 10 µg/l

CLIENT West Lake

CLIENT	West Lake		
CLIENT I.D.	EH-25	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RMC I.D.	#572_		DATE ANALYSIS COMPLETED 5 August 1981

VOLATILES

	<u> 1/94</u>		<u> 49/1</u>
acrolein	**	1,2-dichloropropane	ND_
acrylonitrile	**	1,3-dichloropropylene ¹	*
benzene	1.1	ethylbenzene	21.3
carbon tetrachloride	+	methylene chloride	11.4
chlorobenzene	ND	methyl chloride	+
1,2-dichloroethane	5.4	methyl bromide	+
1,1,1-trichloroethane	ND_	bromoform	ND
1,1-dichloroethane	ND	dichlorobromomethane	<u> </u>
1,1,2-trichloroethane	ND	trichlorofluoromethane	+
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	*
chlorcethane	*	chlorodibromomethane	
2-chlorouthylvinyl ether	ND	tetrachloroethylene	48.4
chloroform	ND	tolivene	45.3
1,1-dichloroethylene	*	trichlorcethylene	4.4
1,2-trans-dichloroethylene	23.1	vinyl chloride	

ND - Less than 1 µg/kg
* - Less than 10 µg/kg

^{** -} Less than 100 µg/kg

^{1,3-}cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

CLIDAT Wes	t Lake				
CLIENT I.D.	BH-31	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981	
RHC I.D	#573	· ·	DATE ANALYSIS COMPLETED_	16 July	1981

ACID COMPOUNDS

2,4,6-trichlorophenol	<u>ug/l</u>
o-chloro-m-cresol	ND
2-chlorophenol	26.0
2,4-dichlorophenol	ND
2,4-dimethylphenol	ND
2-nitrophenol	NED
4-nitrophenol	*
2,4-dinitrophenol	*
4,6-dinitro-o-cresol	ND
pentachlorophenol	ND
phenol	2.6

ND - Less than 1 µg/l * - Less than 25 µg/l ** - Less than 250 µg/l

CLIINT	West Lake			
CLIENT I.	o. <u>BH-31</u>	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D.	W573		DATA ANALYSIS COMPLETED	22 July 1981

BASE/NEUTRAL COMPOUNDS

·	<u>vg/1</u>		<u> 49/1</u>
acenaphthene	NEO	nitrobenzene	ND
benzidine	**	N-nitrosodimethylamine	**
1,2,4-trichlorobenzene	ND	N-nitrosodiphenylamine	**
hexachlorobenzene	ND	N-nitrosodi-n-propylamine	**
hexachloroethane	NTD	bis(2-ethylhexyl)phthalate	*
bis(2-chloroethyl)ether	ND	butyl benzyl phthalate	16.2
2-chloronaphthalene	ND	di-n-butyl phthalate	ND
1,2-dichlorobenzene	ND	di-n-octyl phthalate	1.4
1,3-dichlorobenzene	NID	diethyl phthalate	190
1,4-dichlorobenzene	ND	dimethyl phthalate	סא
3,3'-dichlorobenzidine	*	benzo (a) anthracene	ND
2,4-dinitrotoluene	**	benzo(a)pyrene	MD
2,6-dinitrotoluene	ND ND	benzo(h) fluoranthene	ND
1,2-diphenylhydrazine	ND	benzo(k) fluoranthene	ND
fluoranthene	ND ND	chrysene	ND
4-chlorophenyl phenyl ether	ND	acenaphthylene	ND
4-bramaphenyl phenyl ether	ND	anthracene	ND
bis(2-chloroisopropyl)ether	ND	benzo (g.h.i.) perylene	*
bis(2-chloroethoxy)methane	ND	fluorene	ND
hexachlorobutadiene	ND	phenanthrene	ND
hexachlorocyclopentadiene	•	dibenzo (a,h)anthracene	+
isophorone	ND	indeno(1,2,3-c,d)pyrene	ND
naphthalene!	ND	pyrene	ND
Lis (chloraicthyl) ether	**	2,3,7,8-tetrachlorodibenzo-	
		p-dioxin	**

ND - less than $1 \mu g/1$

^{• -} Less than 10 µg/1

^{** -} Less than 25 µg/l

Benzo(h) fluoranthene and benzo(k) fluoranthene could not be resolved, values reported indicate the sum of both compounds.

CLIENT_West	Lake			
CLIENT 1.D	BH-31	(NPDES)	DATE SAMPLE RECEIVED	6 July 1981
RMC I.D.	#573		DATE ANALYSIS COMPLETED	24 July 1981
		1	PESTICIDES	
		<u>hd∖J</u>		<u>ug/1</u>
aldrin	_	ND	a-BHC	*
dieldrin	_	ND	b-BHC	ND
chlordane	_	ND	d-BHC	8.5
4,4'-DOT	_	ND	g-BHC	ND
4,4'-DOE	_	ND	PCB - 1242	ND
4,4'-000	_	ND	PCB - 1254	ND
endosulfan I	-	*	PCB - 1221	ND
endosulfan II	-	*	PCB - 1232	ND
endosulfan sulf	ate	4	PCB - 1248	ND
endrin	_	+	PCB - 1260	ND
endrin aldehyde		*	PCB - 1016	ND

toxaphene

ND

ND - Less than 1 µg/l + - Less than 10 µg/l

heptachlor

heptachlor epoxide

CLIENT	West Lake	·	-
CLIENT I.D.	BH-31	(NPDES)	DATE SAMPLE RECEIVED 6 July 1981
RHC I.D	#573		DATE ANALYSIS COMPLETED 5 August 1981

VOLATILES

	<u>1/94</u>		1/64
acrolein	**	1,2-dichloropropane	N7)
acrylonitrile	**	1,3-dichloropropylene ¹	*
benzene	ND	ethylbenzene	30.4
carbon tetrachloride	*	methylene chloride	1,4
chlorobenzene	9.6	methyl chloride	
1,2-dichloroethane	4.2	methyl bromide	•
1,1,1-trichloroethane	1.4	bromoform	ND
1,1-dichloroethane	<u> </u>	dichlorobromomethane	NO
1,1,2-trichloroethane	<u> </u>	trichlorofluoromethane	2.6
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	+
chlorcethane	*	chlorodibromomethane	NU
2-chlorouthylvinyl ether	ND	tetrachloroethylene	19.3
chloroform	3.1	toluene	30.9
1,1-dichloroethylene	ND	trichloroethylene	13.1
1,2-trans-dichloroethylene	40.2	vinyl chloride	•

ND - Less than 1 µg/kg

^{* -} Less than 10 µg/kg ** - Less than 100 µg/kg

^{1,3-}cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

כרוואנ_	West Lake	
CLIEVT I	DBH-35	DATE SAMPLE RECEIVED 6 July 1981
RMC I.D.	#574	DATE ANALYSIS COMPLETED 16 July 1981

ACID COMPOUNDS

2,4,6-trichlorophenol	± ₽ 9 /1
o-chloro-m-cresol	ND
2-chlorophenol	1414.7
2,4-dichlorophenol	NE
2,4-dimethylphenol	ND
2-nitrophenol	ND
4-nitrophenol	*
2,4-dinitrophenol	**
4,6-dinitro-o-cresol	•
pentachlorophenol	•
phenol	159.0

ND - Less than 1 µg/l * - Less than 25 µg/l ** - Less than 250 µg/l

West Lake

CLUMI_

CLIENT I.D.	EH-35	(NPDES)	DATE SAMPLE RECEIVED6	July 1981
RMC I.D.	#574		DATA ANALYSIS COMPLETED 22	July 1981
		BASE/N	EUTRAL COMPOUNDS	
		<u> 1/54</u>		<u>√</u> 94
acenaphthene		ND_	nitrobenzene	•
tionzidine		**	N-nitrosodimethylamine	**
1,2,4-trichlorobenzen	ne	ND	N-nitrosodiphenylamine	**
hexachlorobenzene		ND_	N-nitrosodi-n-propylami	ine **
hexachloroethane		ND	bis(2-ethylhexyl)phthal	late ••
his (2-chloroethyl) eth	ier	ND_	butyl benzyl phthalate	18.4
2-chloronaphthalene		ND	di-n-butyl phthalate	•
1,2-dichlorobenzene	-	ND	di-n-octyl phthalate	ND
1,3-dichlorobenzene		ND	diethyl phthalate	
1,4-dictiforobenzene		ND	dimethyl phthalate	ND
3,3'-dichlorohenzidir	ne	*	benzo(a) anthracene	ND
2,4-dinitrotoluene		**	benzo(a) pyrene	ND
2,6-dinitrotoluene			benzo(b) fluoranthene1	ND
1,2-diphenylhydrazine	2	ND	benzo(k)fluoranthene	ND
fluoranthene		ND	chrysene	ND_
4-chlorophenyl phenyl	ether	ND.	acenaphthylene	ND
4-bramophenyl phenyl	ether	ND	anthracene	ND_
bis (2-chloroisopropy))ether	ND	benzo (g.h.i.) perylene	•
bis(2-chloroethoxy)me	thane	ND	fluorene	ND
hexachlorobutadiene		ND ND	phenanthrene	ND
hexachlorocyclopentad	liene	•	dibenzo (a,h)anthracene	•
isaphorone		ND	indeno(1,2,3-c,d)pyrene	ND ND

pyrene

p-dioxin

2,3,7,8-tetrachlorodibenzo-

ND

bis (chloramethyl) other

naphthalene!

3.8

**

ND - Less than $1 \mu g/1$

^{* -} Less than 10 µg/1

^{* -} Less than 25 µg/l

Benzo(b)[luoranthene and benzo(k)fluoranthene could not be resolved, values reported indicate the sum of both compounds.

CLIENT West La	ke		-	
CLIENT I.D	BH-35	(NPDES)	DATE SAMPLE RECEIVED 6	July 1981
RMC I.D.	W574		DATE ANALYSIS COMPLETED_	24 July 1981
		<u>P</u>	STICIDES	
	<u>r</u>	9/1		. <u>pg/1</u>
aldrin		*	a-BHC	ND
dieldrin	·	ND	b-BHC	ND
chlordane		940	d-BHC	*
4,4'-DOT		ND	g-BHC	<u>ND</u>
4,4'-DDE		NO	PCB - 1242	ND
4,4'-000		ND	PCB - 1254	ND
endosulfan I		*	PCB - 1221	ND
endosulfan II		<u> </u>	PCB - 1232	ND
endosulfan sulfat	e <u> </u>	*	PCB - 1248	ND
endrin		*	PCB - 1260	ND
endrin aldehyde		*	PCB - 1016	ND
heptachlor		ND	toxaphene	ND_
heptachlor epoxid	e	*		

ND - Less than 1 μ g/1 * - Less than 10 μ g/1

CLIENT	West Lake	
CLIENT I.D.	BH-35	DATE SAMPLE RECEIVED 6 July 1981
RMC I.D	#574	DATE ANALYSIS COMPLETED 5 August 1981

WOLATILES

	<u>1/9ע</u>		<u>1/64</u>
acrolein	**	1,2-dichloropropane	NO
acrylonitrile	**	1,3-dichloropropyleme ¹	*
benzené	15.7	ethylbenzene	487.9
carbon tetrachloride	22.4	methylene chloride	26.4
chlorobenzene	ND	methyl chloride	*
1,2-dichlorcethane	81.6	methyl bromide	57.6
1,1,1-trichloroethane	<u>ND</u>	bromoform	ND
1,1-dichloroethane	18.4	dichlorobromomethane	ND
1,1,2-trichloroethane	ND_	trichlorofluoromethane	147.9
1,1,2,2-tetrachloroethane	ND	dichlorodifluoromethane	*
_chloroethane	*	chlorodibromomethane	ND
2-chlorouthylvinyl ether	•	tetrachloroethylene	45.3
chloroform	25.1	tolvene	277.1
1,1-dichloroethylene	5.2	trichloroethylene	724.9
1,2-trans-dichloroethylene	7,7	vinyl chloride	**

ND - Less than 1 µg/kg * - Less than 10 µg/kg ** - Less than 100 µg/kg

^{11,3-}cis-dichloropropylene and 1,3-trans-dichloropropylene could not be resolved, values reported indicate the sum of both compounds.

Chemical Analysis of Radioactive Material From Areas 1 and 2 Table 13

Concentration in ppm

	Offsite Bkg Sample		Area l Surface (#102)		Area 2 Surface (#104)	Area 2 Surface (#105)
Barium	250	300	1811	2386	1158	1197
Lead	16	15	108	121	11	50
Zinc	132	146	94	76	28	167
Sulfate	20	15	108	121	11	50

Summary of Background Measurements in the Vicinity of West Lake Landfill, St. Louis County Missouri

Table 14

Sample Type	Earth City	Background Taussig Road	Old St. Charles Rock Road
Flux (Av)(pCi/m2.s)	0.50 +/- 54%	0.58 +/- 27%	0.50 +/- 30%
Exposure Rate (uR/hr)	10.6	8.0	
Soil Conc. (Ra-226 pCi/gm)	2.6 +/- 23%	2.5 +/- 19%	
HVAS (W.L.)	1.1E-3	5E-3	1.7E-3

Target Criteria and Measurements LLDs for West Lake Landfill
Table 15

Soil Contaminants

Nuclide	Target Criteria	LLD
Ra-226	5pCi/g	lpCi/g
Total U	15pCi/g	3pCi/g
U-238	30pCi/g	6pCi/g
บ-235	30pCi/g	6pCi/g
Th-232	5pCi/g	lpCi/g
Th-230	15pCi/g	3pCi/g

Water and Airborne Contaminants

Nuclide	Target Criteria	LLD
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
All	MPC Unrestricted	20% MPC
Radon Daughters	0.03 W.L.	0.006 W.L.
Ra-226 (water)	3E-8 uCi/ml	6E-9 uCi/m1

## External Radiation

Nuclide	Target Criteria	LLD
All	20 uR/hr	4 uR/hr

APPENDIX I

Radiological Survey Instruments and Methods

#### A. Portable Survey Instrument

The portable survey instruments used at West Lake included two complete sets of Johnson equipment, which consist of battery operated rate meters, scalers and alpha, beta and gamma probes. These systems (see Figure I-1) are totally portable and can be used in the field for both measurements and sample counting.

The alpha probes use a ZnS (Ag) scintillation detector; the beta detector is a thin window (1.4mg/cm2 mica) GM tube, and the gamma detector is a 2" by 2" NaI(T1) crystal. The alpha and beta probes were calibrated with "NBS traceable" sources at the RMC calibration facility in Philadelphia and the gamma scintillator was cross-calibrated with a primary ionization chamber system, described below.

#### B. Ionization Chamber System

External gamma dose rates were accurately measured with the RMC constructed Tissue Equivalent Ionization Chamber System (Figure I-2). This system consisted of a 16 liter tissue equivalent, gas filled ionization chamber (Shonka chamber), a Keithley vibrating capacitor electrometer, a printer and battery pack. It is capable of measuring dose rates at background levels to a precision of a few percent.

Since this system is bulky and somewhat fragile, it is not as suited for extensive field measurements as a smaller, lightweight NaI(Tl) portable survey instrument. Therefore,

the NaI(T1) detector was used for the majority of the field gamma measurements. Since this detector's response is energy dependent, it cannot be used as a "micro R meter" unless it is initially calibrated for such use.

The calibration performed by RMC consisted of accurately measuring the exposure rate at several locations at West Lake Landfill, using the Tissue Equivalent Ionization Chamber, then recording NaI(T1) measurements at the same location. In this manner a set of NaI(T1) count-rate versus exposure rates were obtained and a uR/hr calibration factor established, as shown in Figure I-3.

Due to the energy dependence of the NaI detector, this conversion factor will apply only to the radionuclides and geometries for which the calibrations were made. In the case of West Lake, analyses have verified the presence only of naturally occurring nuclides of the uranium series (Ra-226 and daughters), thorium series and potassium. Therefore, the conversion factor established at West Lake will apply only to naturally occurring radionuclides distributed in soil.

#### C. Mobile Lab Gamma Analysis System

The mobile lab gamma analysis system (Figure I-4) consists of a PGT 15% efficient (relative to a  $3^{**} \times 3^{**}$  NaI(Tl) crystal) intrinsic germanium (IG) detector, shield and Tennecomp TP-50 laboratory computer data acquisition

module. The analysis system was calibrated for all counting geometries with an NBS supplied Eu-152 source.

Each count was analyzed by a computer program for determination of gamma energies and peak areas. All results were printed out immediately following analysis on-site, and data was stored on floppy discs for future analysis, as needed.

Samples were sealed in counting containers and stored to allow for complete ingrowth of radon and daughters, whenever possible. In these cases, Ra-226 was determined by counting the daughter Bi-214 gamma-ray lines at 609 and 1764 KeV. Pb-214 was determined by the 295 and 352 KeV lines, U-238 from its 93 KeV line, Ra-223 from its 270 KeV line, Rn-219 from its 401 KeV line, Pb-211 from its 405 and 832 KeV lines, Th-227 from its 237 KeV line and K-40 from its 1462 KeV line.

Typical LLDs for Ra-226 were 0.1 pCi/g in soil and vegetation, and 0.4 pCi/l in water. For Rn-219 daughters on air filters, LLDs were 0.4 pCi/l. The LLD for U-238 in soil was on the order of 1 pCi/g.

## D. Auger Hole Logging System

Detailed logging of selected auger holes was performed with the system shown in Figure I-5. This system consists of a custom designed EG&G Ortec intrinsic germanium detector (10% eff) with a narrow dewar, coupled to a Tracor-Northern

1750 MCA used for data acquisition and initial field evaluations. Data was stored on a tape cassette recorder, then transferred to the lab computer system for final analysis. The entire system, including an NIM module power supply with a bias power supply and amplifier, was powered in the field by a portable 5000 watt gasoline-driven generator.

The logging system was calibrated as described in Attachment 1. Field counting times varied from 2 minutes to 10 minutes at each location, depending upon the level of activity present. Typical LLDs for this system and relatively short count times are 0.3 pCi/g for Bi-214, 1 pCi/g for U-238, 0.2 pCi/g for Pb-212 and 0.1 pCi/g for K-40.

The field use of this system was somewhat limited by initial failure due to high humidity effects on the pre-amp components and thermal insulation of the detector housing. These problems were partially corrected by sealing the detector in an outer container and allowing dry air to flow through the container.

### E. Radon Analysis Systems

Radon flux was determined using the accumulator system shown in Figure I-6, which is similar to those used by Wilkening [1] and others. Accumulation times varied from 15 minutes to 2 hours. Gas samples were drawn and counted in

the EDA Radon Detector, usually 2 hours after sampling, to allow for daughter ingrowth. Standard MSA charcoal canisters were used for the canister method, as described by Countess [2].

## F. Alpha-Beta Counting System.

THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE

All samples were counted for gross alpha or beta activity on the Gamma Products low background gas flow proportional counter, shown in Figure I-7. The system is automatic and can be programmed for a variety of counting parameters.

### REFERENCES

- [1] M. Wilkening, "Measurement of Radon Flux by the Accumulation Method", Workshops on Methods for Measuring Radiation in and Around Uranium Mills, 3, 9, 1977, pp. 131-137.
- [2] R. J. Countess, "Measurements of Rn-222 Flux with Charcoal Canisters" ibid. pp. 139-147.

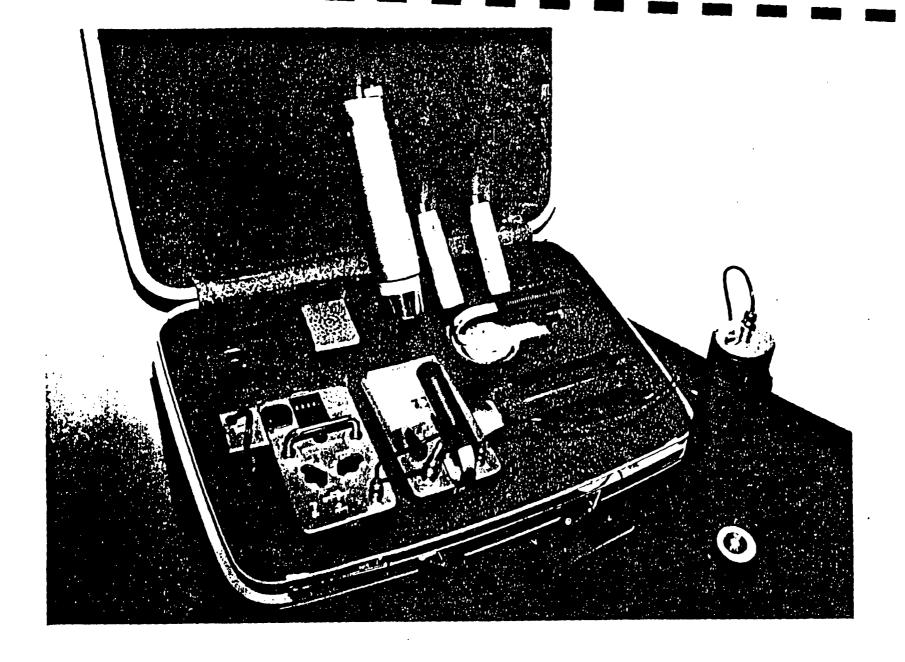



Figure I-1. Portable Survey Instrument Kit.

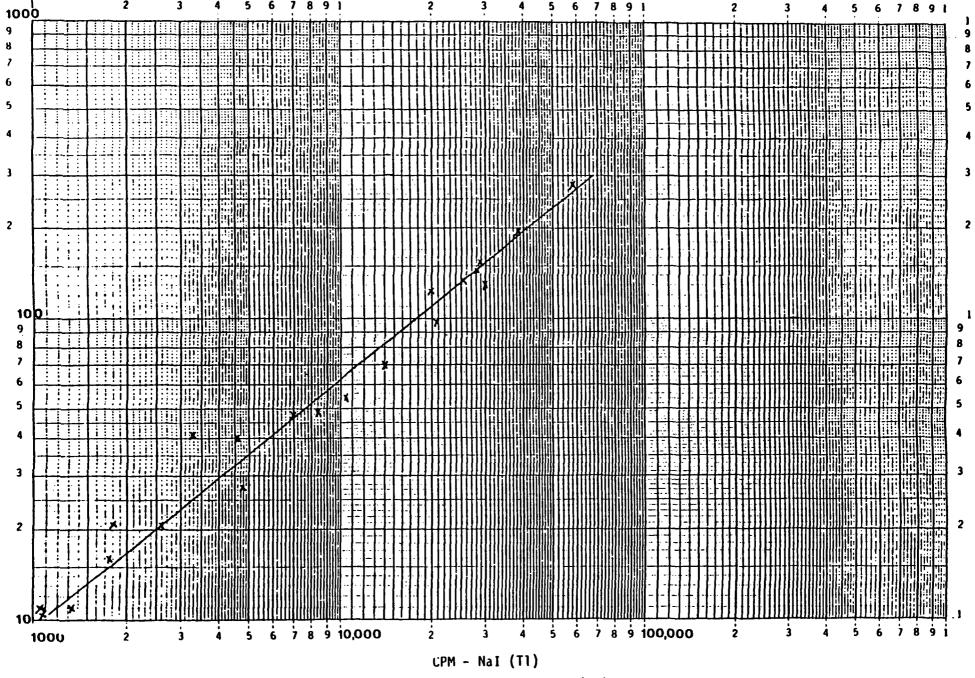



Figure I-3. Ion chamber exposure rates versus NaI (TI) count rates, West Lake Landfill site.



Figure I-4. Interior of mobile lab showing gamma counting system and other equipment.

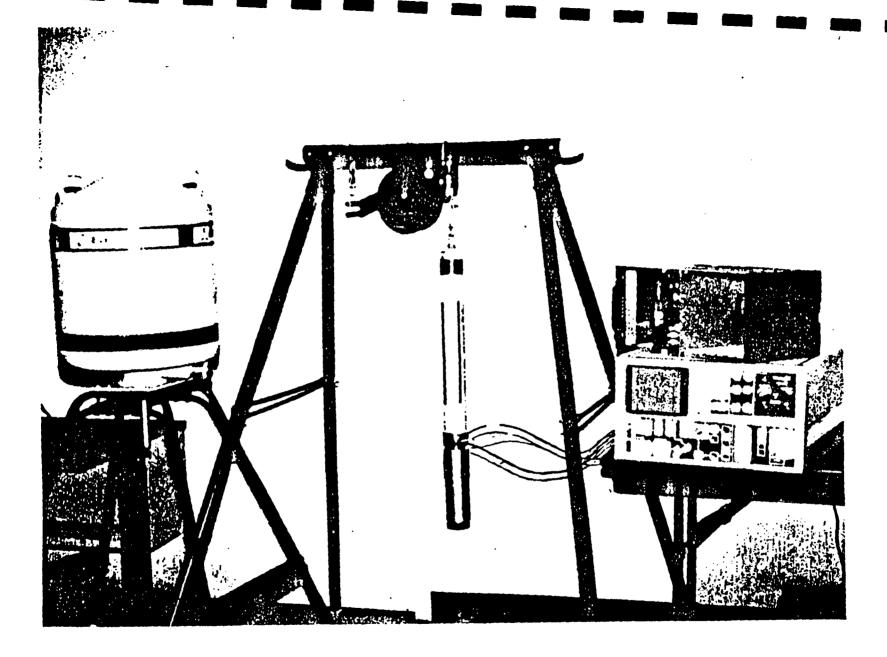



Figure 1-5. In-situ auger hole logging system with intrinsic germanium detector and narrow dewar assembly, data acquisition equipment and storage/fill dewar.



Figure I-7. Automatic beta-gamma gas flow proportional counter.

ATTACHMENT 1 TO APPENDIX I

# INTRINSIC GERMANIUM WELL LOG DETECTOR CALIBRATION

The intrinsic germanium detector was connected to the pulse height analysis system consisting of the following components:

Ortec Model 459 High Voltage Power Supply
Canberra 2011 Spectroscopy Amplifier
Tracor Northern 1750 MCA
Teletype Model 43 Printer

Gain and voltage supply settings were adjusted to obtain an energy spectrum of 0 to 2000 kev, which corresponds to approximately 1 kev per channel.

Calibration of the well logging system was performed using the calibration rig shown in Figure 1. This rig is constructed as a series of four concentric rings surrounding a 6 inch PVC casing. Each ring contains thin plastic tubes 1-1/4" diameter by 36" long. A set of "source rods" and "background rods" were prepared and loaded into these tubes in a variety of configurations for the various calibration and test counts.

The geometry of the rig is such that the distance from the center of the casing (or detector) to the center of the innermost ring is 3.75 inches, to the center of the second ring is 5.0 inches, to the center of the third ring is 6.25

inches, and to the center of the fourth ring is 7.50 inches. All voids between tubes were filled with low background sand. It was determined that the ratio of source volume in each ring to the total ring area was about 0.6. Hence, when source rods were fully loaded into a given ring, the activity counted represented approximately 60% of the total area (volume) the detector viewed, and counts were adjusted accordingly.

Each source tube is a 12 inch high by 1 inch diameter tube filled with a material containing Eu-152. The source material was prepared by mixing the standard Eu-152 source solution with plaster of paris, at a constant ratio designed to give a uniform specific activity of 440 pCi/gram. Background rods were filled with "clean" plaster of paris. Plaster of paris was chosen because of its ease of handling, ability to uniformly distribute the source throughout the material, and its density, which approximates that of common soil. (Density of soil, 1.7-2.3 g/cubic cm; density of plaster, 1.5 g/cubic cm; density of sand, 1.4 g/cubic cm)

Four different configurations of source and blank tubes were used for the calibration. Source tubes were placed three high in one of the four concentric rings of the rig for each count while the balance of the rig was filled with blanks. These configurations correspond to the source material being a radial distance of 3.75, 5.00, 6.25 and 7.50 inches from the detector.

Each configuration was counted for 900 seconds, and the area under each of the eight major Eu-152 photopeaks determined for each count.

Calculation of counts per gamma per gram was determined by the following method:

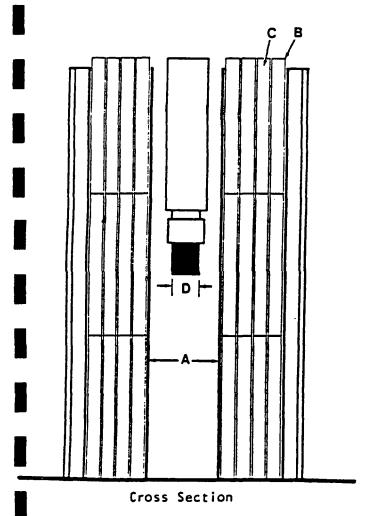
#### NCNTS/GAMMA/GRAM =

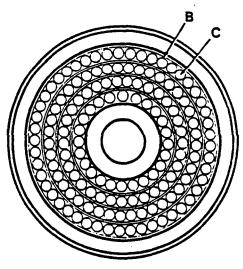
[NCNTS]/[(440pCi/g)(3.7E-2d/s/pCi)(900s)(ABUNDANCEgamma/d)]

For each gamma energy, the net counts/gamma/gram vs distance from the center of the detector was listed. These response curves were then plotted for each energy, for distances and activities which extend to zero net counts. This represents an "infinite" distance from the detector. Using these curves, the total counts from the detector to an infinite distance was calculated by integrating the area under the curve using Simpson's rule for approximating integrals. Of prime importance is the integral from 2 inches to infinity, since this is the area the detector will view when placed inside a 4 inch PVC casing.

Finally, the integrated net count/gamma/gram, from 2 inches to infinity, was plotted vs energy, for each of the Eu-152 photons. With this efficiency curve, a specific activity in soil (pCi/gram) can be determined from a bore hole count, assuming the radionuclide can be identified and its gamma abundance determined. The calculation is:

count, with a 95% confidence level and precision of 0.4 pCi/g.


Figure 1
CALIBRATION RIG ASSEMBLY


"A" - 6" 1.D. PVC Pipe

"B" - 1.25" diameter x 36" long butyrate source holder tubes

"C" - 1" diameter x 12" long source tubes. 3 per holder tube

"D" - IG Detector





NRC con. 225			144
NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION		1. REPORT NUMBER (Assigned by DDC)	
BIBLIOGRAPHIC DATA SHEET		NUREG/CR-2722	
Radiological Survey of the West Lake Landfill St. Louis County, Missouri		2. (Leave blank)	
		J. RECIPIENT'S ACCESSION NO.	
L.F. Booth, D.W. Groff, G.S. McDowell, J.J. Adler, S.I. Peck, P.L. Nyerges, F.L. Bronson		5. DATE REPORT CO	OMPLE TED
		MONTH .	1982
9. PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include	Zio Codel	April	
Radiation Management Corporation 3356 Commercial Avenue Northbrook, IL 60062		MONTH	YEAR
		Mav	1982
		6. (Leave blank)	
		B. (Leave blank)	
Division of Fuel Cycle and Material Safety Office of Nuclear Material Safety and Safeguards U. S. Nuclear Regulatory Commission Washington, D. C. 20555		10. PROJECT, TASK/WORK UNIT NO.	
		11. FIN NO. B6901	
Final Report	April 1981	- February 1982	
15. SUPPLEMENTARY NOTES	,	14. (Leave dank)	
levels, concentrations of airborne contaminant of subsurface deposits. Results indicate that probably originating from the Hazelwood, Misso at the West Lake Landfill. Two areas of conta and located at depths of up to 20 feet below to There is no indication that significant quantiat this time.	large volum ouri, Latty A mination, co the present s	mes of uranium Evenue site, ha Evering more the Eurface, have b	ore residues, ave been buried han 15 acres been identified.
17. KEY WORDS AND DOCUMENT ANALYSIS	17a DESCRIPTOR	<del> </del>	
17n IDENTIFIERS OPEN ENDED TERMS			
IB AVAILABILITY STATEMENT	19 SECURITY	CLASS (This report)	21 NO OF PAGES
Unlimited		CLASS (This power)	22 PRISE